• Title/Summary/Keyword: Multi-Axis

Search Result 563, Processing Time 0.029 seconds

DEVELOPMENT OF AN INTELLIGENT ULTRASONIC EVALUATION SYSTEM WITH A MULTI-AXIS PORTABLE SCANNER

  • Sung-Jin Song;Hak-Joon Kim;Won-Suk Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.167-176
    • /
    • 1996
  • Flaw classification and sizing are very essential issues in quantitative ultrasonic nondestructive evaluation of various materials and structures including weldments. For performing of these tasks in an automated fashion, we are developing an intelligent ultrasonic evaluation system with a multi-axis portable scanner which can do consistent and efficient acquisition and processing of ultrasonic flaw signals. Here we present our efforts to develop of this intelligent system including design of the portable scanner, acquisition and processing of ultrasonic flaw signals, display of pseudo 3-D image of flaws, and classification and sizing of flaws in weldments.

  • PDF

Implementation of Web Based Monitoring Systems for Multi-Axis Force Control Systems (다축 힘제어 시스템을 위한 웹기반 감시시스템 구현)

  • Nam, Seung-Uk;Lee, Hyun-Chul;Nam, Hyun-Do;Kang, Chul-Goo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.3072-3074
    • /
    • 2005
  • In this paper, web based monitoring systems are implemented for multi-axis force control systems of an intelligence robot. A web based monitoring system is implemented by porting Linux at embedded systems which include a Xscale processor. A device driver is developed to receive data from multi-axis force sensors in Linux operation systems. To control this device driver, a socket program for the Labview is also developed.

  • PDF

Inverse and Forward Kinematics Analysis of 6 DOF Multi Axis Simulation Table and Verification (6 자유도 다축 시뮬레이션 테이블의 역.순기구학 해석 및 검증)

  • Jin, Jae-Hyun;Jeon, Seung-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.202-208
    • /
    • 2008
  • A 6 DOF Multi axis simulation table (MAST) is used to perform vibration and fatigue tests for parts or assemblies of automobiles, aircraft, or other systems. It consists of a table and 6 linear actuators. For its attitude control, we have to adjust the lengths of 6 actuators properly. The system is essentially a parallel mechanism. Three actuators are connected to the table directly and other three actuators are connected indirectly. Because of these, the MAST shows also a serial mechanism#s property: the inverse kinematics is more complicated than a pure parallel mechanism and each actuator can operate independently. The authors have performed a kinematics analysis of the 6 DOF MAST. We have presented an analytical and a numerical solution for the inverse and forward kinematics, and we have verified the solutions by a 3D CAD software.

A Study on the Dynamic Characteristic Analysis of Multi-axis Simulator (다축 제어 시뮬레이터의 동특성 해석에 관한 연구)

  • 정상화;박용래;류신호;김현욱;나윤철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.715-718
    • /
    • 2001
  • Test in the development of vehicle consist of driving test and simulation test. The last one has many advantages. It can reduce time and cost during development, can overcome the spacial and environmental limitation, and can provides repeatabilities of similar experiments and various data. In these reason, the simulation test is used more for analysis and development of new vehicle. In this research the result of kinematic analysis on multi-axis simulator is compared with the simulated result using dynamic analysis program, ADAMS, and the maximum stress and strain are analyzed for the safety of link and specifications of optimal design using finite element method.

  • PDF

Force-Sensing Error Propagation in Multi-Axis Force Sensors (다축 힘센서에서 힘감지 오차의 전파)

  • 강철구
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2688-2695
    • /
    • 2000
  • In multi-axis force sensor, compliance matrices representing structural behaviour of internal sensor bodies play an important role in decoupled sensing and accuracy, Recently, error propagation through compliance matrices has been studied via approximation approach. However the upper bound of measured force error has not been known. In this paper, error propagation in force sensing is analysed in a unified way when both strain measurement error and compliance matrix error exist, and the upper bound of the measured force error is derived exactly(not approximately). The analysis is examined through a numerical example.

Development of Virtual Prototype for Multi-Purpose Lathe Slide System (다기능 복합가공기 이송시스템의 가상시제품 개발)

  • 정상화;차경래;김상석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.556-556
    • /
    • 2000
  • In the multi-purpose lathe, the design of tilting turret slide system has an important and critical role to enhance the accuracy of the machining process. Tilting turret unit is traveled by 3-axis slide systems. There is a need to design this part very carefully. In this research, the 3-axis slide system with tilting turret unit is researched with two approaches; The first is that 3-axis slide system is modeled and simulated using ADAMS software. The dynamic behavior of this system is visualized by data graphs and dynamic animations. The second is that the slide system is analyzed with the aspect of stress distribution. The slide system is modeled and displayed by PATRAN and analyzed by NASTRAN. The analysis of strain and stress distribution in the each node is prompted and visualized in the computer. The first step of virtual prototype which makes it possible to design economically and effectively is developed.

  • PDF

A Study on the Axis Used for Interior Spaces of Peter Eisenman Architecture (피터아이젠만 건축의 실내 공간에 사용된 축에 관한 연구)

  • Lee, Jong-Ran
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.11 no.4
    • /
    • pp.39-46
    • /
    • 2011
  • This Study is about the Axis used for creating forms of interior spaces in representative works of Peter Eisenman architecture. The plans, elevations, photos of interior spaces of his architecture were collected and analysed. In conclusion, the methods using axises were classified in the axises crossing right angle and the rotating axises crossing right angle. The rotating axis were divided into one-angle rotating and multi-angle rotating. The axises were rotated on the plan or rotated on the elevation. The axises crossing right angle were used for dividing, assembling, transforming and composing different proportions of rectangles in interior spaces. The rotating axises crossing right angle were used for creating divers forms such as triangle, quadrilateral, and polygon. The one-angle rotating emphasizes directions of axises in interior spaces. The multi-angle rotating emphasizes decentered directions in interior spaces. The parts created while crossing axises three-dimensionally were opened or filled. The axises were used dynamically and three-dimensionally for diversity of forms in interior spaces of Peter Eisenman architecture.

Vibration Analysis of a Nano Imprinting Stage Using CAE (CAE를 이용한 나노 임프린팅 스테이지의 진동 해석)

  • Lee, Kang-Wook;Lee, Jae-Woo;Lee, Sung-Hoon;Lim, Si-Hhyung;Jung, Jae-Il;Yim, Hong-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.579-584
    • /
    • 2008
  • A nano-imprinting stage has been widely used in various fields of nanotechnology. In this study, an analysis method of a nano-imprinting stage machine using FEM and flexible multi-body vibration has been presented. The simulation using CAE for the imprinting machine is to analyze vibration characteristics of 3-axis nano-imprinting stage and 4-axis nano-imprinting stage. Structural components such as the upper plate have been modeled with finite elements to analyze flexibility effects during the precision stage motion. In this paper flexible multi-body dynamic simulation is executed to support robust design of the precision stage mechanism.

  • PDF

Engine Mounting System Optimization for Improve NVH (NVH 향상을 위한 엔진 설치 시스템 최적화)

  • Kim, Jang-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4665-4671
    • /
    • 2013
  • Engine mounting system is the most responsible system for NVH performance of vehicle. The vibration at idle shake, road shake, Key ON/OFF, gear shift tuned by the engine mount position and stiffness. Previously described Engine mounting system theory investigated and summarized in this paper. Decoupling of the Power train rigid mode and Reducing the angle between Torque-Roll-Axis and Elastic-roll-Axis is starting point of optimization. Multi-optimization analysis was performed because of variety simulation case and FE-model. Eventually, Find the best mount location and the stiffness has improved the performance of the vehicle NVH.

Evaluation Method of the Multi-axis Errors for Machining Centers (머시닝센터의 다축오차 평가 방법)

  • Hwang, Joo-Ho;Shim, Jong-Youp;Ko, Tae-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.904-914
    • /
    • 2011
  • The volumetric errors of CNC machining centers are determined by 21 errors, including 3 linear errors, 6 straightness errors, 3 perpendicular errors, 9 angular errors and non-rigid body errors of the machine tool. It is very time consuming and hard to measure all of these errors in which laser interferometer and other parts are used directly. Hence, as many as 21 separate setups and measurements are needed for the linear, straightness, angular and perpendicular errors. In case of the 5-axis machining centers, two more rotary tables are used. It can make 35 error sources of the movement. Therefore, the measured errors of multi movements of the 5-axis tables are very complicated, even if the relative measured errors are measured. This paper describes the methods, those analyze the error sources of the machining centers. Those are based on shifted diagonal measurements method (SDM), R-test and Double ball bar. In case, the angular errors of machine are small enough comparing with others, twelve errors including three linear position errors, six straightness errors and three perpendicular errors can be calculated by using SDM. To confirm the proposed method, SDM was applied to measuring 3 axes of machine tools and compared with directly measurement of each errors. In addition, the methods for measuring relative errors of multi-axis analysis methods using R-test and Double Ball Bar are introduced in this paper.