• Title/Summary/Keyword: Multi k Analysis

Search Result 6,084, Processing Time 0.045 seconds

ANALYSIS OF TWOPHASE FLOW MODEL EQUATIONS

  • Jin, Hyeonseong
    • Honam Mathematical Journal
    • /
    • v.36 no.1
    • /
    • pp.11-27
    • /
    • 2014
  • In this paper, we propose closures for multi-phase flow models, which satisfy boundary conditions and conservation constraints. The models governing the evolution of the fluid mixing are derived by applying an ensemble averaging procedure to the microphysical equations characterized by distinct phases. We consider compressible multi species multi-phase flow with surface tension and transport.

Numerical analysis of Multi-Strand Anchor (하중분산 인장형 앵커의 수치해석)

  • Kim, Sung-Kyu;Kang, Byung-Chul;Kim, Nak-Kyung;Kim, Jeong-Ryeol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1243-1249
    • /
    • 2010
  • Ground anchors can be good solution in large and deep excavation. Anchored supports generally provide larger workspace than strut supports and good performances. The major benefit provided by these anchored systems was the open excavation area created by eliminating horizontal or raked struts, which generally inhibit rapid construction within the site area. In loose soils, however, anchors are sometimes hard to get high pullout anchor capacity, so that the spacing of anchor both horizontally and vertically is frequently controlled, in which the construction costs of anchors are increased. In order to increase anchor capacity, therefore, conceptual introduction of the multi-strand anchor is presented in this paper. Also, this study shows an numerical study of predicting the load transfer of the multi-strand anchor and a beam-column analysis was performed by a Elastic-Plastic beam theory.

  • PDF

Trade-off Analysis in Multi-objective Optimization Using Chebyshev Orthogonal Polynomials

  • Baek Seok-Heum;Cho Seok-Swoo;Kim Hyun-Su;Joo Won-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.366-375
    • /
    • 2006
  • In this paper, it is intended to introduce a method to solve multi-objective optimization problems and to evaluate its performance. In order to verify the performance of this method it is applied for a vertical roller mill for Portland cement. A design process is defined with the compromise decision support problem concept and a design process consists of two steps: the design of experiments and mathematical programming. In this process, a designer decides an object that the objective function is going to pursuit and a non-linear optimization is performed composing objective constraints with practical constraints. In this method, response surfaces are used to model objectives (stress, deflection and weight) and the optimization is performed for each of the objectives while handling the remaining ones as constraints. The response surfaces are constructed using orthogonal polynomials, and orthogonal array as design of experiment, with analysis of variance for variable selection. In addition, it establishes the relative influence of the design variables in the objectives variability. The constrained optimization problems are solved using sequential quadratic programming. From the results, it is found that the method in this paper is a very effective and powerful for the multi-objective optimization of various practical design problems. It provides, moreover, a reference of design to judge the amount of excess or shortage from the final object.

Automatic Multi-torch Welding System with High Speed (고속 다전극 자동 용접 시스템)

  • Moon, Hyeong-Soon;Ko, Sung-Hoon;Kim, Yong-Baek
    • Journal of Welding and Joining
    • /
    • v.25 no.2
    • /
    • pp.49-54
    • /
    • 2007
  • Since the wall thickness can be up to 6" or greater, welds must be made in many layers, each layer containing several passes. However, the welding time for the conventional welding processes such as SAW(Submerged Arc Welding) and FCAW(Flux Cored Arc Welding) can be required many hours. The aim of this paper is to develop a high speed welding system with multi-torch and laser vision sensor for increasing the production speed on the line and to remove the need for the operator so that the system can run automatically for the complete multi-torch multi-layer weld. It was shown that the developed laser vision sensor and analysis of arc blow for multi-torch were effective for multi-pass seam tracking and stable arc. A new automated multi-torch welding systems for thick wall applications has been proved in several production lines.

Maximum Torque Control of SynRM Using Multi-PI Controller (Multi-PI 제어기를 이용한 SynRM의 최대토크 제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Park, Ki-Tae;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.956-957
    • /
    • 2008
  • The paper is proposed maximum torque control of SynRM drive using Multi-PI controller. The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current ids for maximum torque operation is derived. The proposed control algorithm is applied to SynRM drive system controlled Multi-PI controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the Multi-PI controller.

  • PDF

Multi-Point Contact Analysis of Two Bodies in Plane (평면에서의 임의 형상을 갖는 물체의 다점 접촉 해석)

  • Jeon, Gyeong-Jin;Park, Su-Jin;Son, Jeong-Hyeon;Yu, Wan-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1631-1637
    • /
    • 2002
  • This paper presents a method for calculating contact force between bodies on plane. At each integration time step, the proposed method finds expected contact point on their outlines and then calculates penetration, velocity of penetration and contact force. This paper adopts continuous analysis method and multi-point contact method to calculate contact force. To obtain the accurate expected contact point on their outlines, a new algorithm is developed. The accuracy of the proposed algorithm is demonstrated by comparing the numerical results of the proposed method and DADS.

Optimum design of direct spring loaded pressure relief valve in water distribution system using multi-objective genetic algorithm (다목적 유전자 알고리즘을 이용한 상수관망에서 스프링 서지 완화 밸브의 최적화)

  • Kim, Hyunjun;Baek, Dawon;Kim, Sanghyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.115-122
    • /
    • 2018
  • Direct spring loaded pressure relief valve(DSLPRV) is a safety valve to relax surge pressure of the pipeline system. DSLPRV is one of widely used safety valves for its simplicity and efficiency. However, instability of the DSLPRV can caused by various reasons such as insufficient valve volume, natural vibration of the spring, etc. In order to improve reliability of DSLPRV, proper selection of design factors of DSLPRV is important. In this study, methodology for selecting design factors for DSLPRV was proposed. Dynamics of the DSLPRV disk was integrated into conventional 1D surge pressure analysis. Multi-objective genetic algorithm was also used to search optimum design factors for DSLPRV.

Advances in Systems Biology Approaches for Autoimmune Diseases

  • Kim, Ho-Youn;Kim, Hae-Rim;Lee, Sang-Heon
    • IMMUNE NETWORK
    • /
    • v.14 no.2
    • /
    • pp.73-80
    • /
    • 2014
  • Because autoimmune diseases (AIDs) result from a complex combination of genetic and epigenetic factors, as well as an altered immune response to endogenous or exogenous antigens, systems biology approaches have been widely applied. The use of multi-omics approaches, including blood transcriptomics, genomics, epigenetics, proteomics, and metabolomics, not only allow for the discovery of a number of biomarkers but also will provide new directions for further translational AIDs applications. Systems biology approaches rely on high-throughput techniques with data analysis platforms that leverage the assessment of genes, proteins, metabolites, and network analysis of complex biologic or pathways implicated in specific AID conditions. To facilitate the discovery of validated and qualified biomarkers, better-coordinated multi-omics approaches and standardized translational research, in combination with the skills of biologists, clinicians, engineers, and bioinformaticians, are required.

A Defect Inspection Algorithm Using Multi-Resolution Analysis based on Wavelet Transform (웨이블릿 다해상도 분석에 의한 디지털 이미지 결점 검출 알고리즘)

  • Kim, Kyung-Joon;Lee, Chang-Hwan;Kim, Joo-Yong
    • Textile Coloration and Finishing
    • /
    • v.21 no.1
    • /
    • pp.53-58
    • /
    • 2009
  • A real-time inspection system has been developed by combining CCD based image processing algorithm and a standard lighting equipment. The system was tested for defective fabrics showing nozzle contact scratch marks, which were one of the frequently occurring defects. Multi-resolution analysis(MRA) algorithm were used and evaluated according to both their processing time and detection rate. Standard value for defective inspection was the mean of the non-defect image feature. Similarity was decided via comparing standard value with sample image feature value. Totally, we achieved defective inspection accuracy above 95%.