• Title/Summary/Keyword: Multi barrier

Search Result 219, Processing Time 0.029 seconds

Characteristics of $Al_2O_3/TiO_2$ multi-layers as moisture permeation barriers deposited on PES substrates using ECR-ALD

  • Gwon, Tae-Seok;Mun, Yeon-Geon;Kim, Ung-Seon;Mun, Dae-Yong;Kim, Gyeong-Taek;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.457-457
    • /
    • 2010
  • Flexible organic light emitting diodes (F-OLEDs) requires excellent moisture permeation barriers to minimize the degradation of the F-OLEDs device. Specifically, F-OLEDs device need a barrier layer that transmits less than $10^{-6}g/m^2/day$ of water and $10^{-5}g/m^2/day$ of oxygen. To increase the life time of F-OLEDs, therefore, it is indispensable to protect the organic materials from water and oxygen. Severe groups have reported on multi-layerd barriers consisting inorganic thin films deposited by plasma enhenced chemical deposition (PECVD) or sputtering. However, it is difficult to control the formation of granular-type morphology and microscopic pinholes in PECVD and sputtering. On the contrary, atomic layer deoposition (ALD) is free of pinhole, highly uniform, conformal films and show good step coverage. Thus, $Al_2O_3/TiO_2$ multi-layer was deposited onto the polyethersulfon (PES) substrate by electron cyclotron resonance atomic layer deposition (ECR-ALD), and the water vapor transmission rates (WVTR) were measured. WVTR of moisture permeation barriers is dependent upon density of films and initial state of polymer surface. A significant reduction of WVTR was achieved by increasing density of films and by applying low plasma induced interlayer on the PES substrate. In order to minimize damage of polymer surface, a 10 nm thick $TiO_2$ was deposited on PES prior to a $Al_2O_3$ ECR-ALD process. High quality barriers were developed from $Al_2O_3$ barriers on the $TiO_2$ interlayer. WVTR of $Al_2O_3$ by introducing $TiO_2$ interlayer was recorded in the range of $10^{-3}g/m^2.day$ at $38^{\circ}C$ and 100% relative humidity using a MOCON instrument. The WVTR was two orders of magnitude smaller than $Al_2O_3$ barriers directly grown on PES substrate without the $TiO_2$ interlayer. Thus, we can consider that the $Al_2O_3/TiO_2$ multi-layer passivation can be one of the most suitable F-OLEDs passivation films.

  • PDF

Mechanical model for analyzing the water-resisting key stratum to evaluate water inrush from goaf in roof

  • Ma, Kai;Yang, Tianhong;Zhao, Yong;Hou, Xiangang;Liu, Yilong;Hou, Junxu;Zheng, Wenxian;Ye, Qiang
    • Geomechanics and Engineering
    • /
    • v.28 no.3
    • /
    • pp.299-311
    • /
    • 2022
  • Water-resisting key stratum (WKS) between coal seams is an important barrier that prevents water inrush from goaf in roof under multi-seam mining. The occurrence of water inrush can be evaluated effectively by analyzing the fracture of WKS in multi-seam mining. A "long beam" water inrush mechanical model was established using the multi-seam mining of No. 2+3 and No. 8 coal seams in Xiqu Mine as the research basis. The model comprehensively considers the pressure from goaf, the gravity of overburden rock, the gravity of accumulated water, and the constraint conditions. The stress distribution expression of the WKS was obtained under different mining distances in No. 8 coal seam. The criterion of breakage at any point of the WKS was obtained by introducing linear Mohr strength theory. By using the mechanical model, the fracture of the WKS in Xiqu Mine was examined and its breaking position was calculated. And the risk of water inrush was also evaluated. Moreover, breaking process of the WKS was reproduced with Flac3D numerical software, and was analyzed with on-site microseismic monitoring data. The results showed that when the coal face of No. 8 coal seam in Xiqu Mine advances to about 80 m ~ 100 m, the WKS is stretched and broken at the position of 60 m ~ 70 m away from the open-off cut, increasing the risk of water inrush from goaf in roof. This finding matched the result of microseismic analysis, confirming the reliability of the water inrush mechanical model. This study therefore provides a theoretical basis for the prevention of water inrush from goaf in roof in Xiqu Mine. It also provides a method for evaluating and monitoring water inrush from goaf in roof.

Reliable charge retention in nonvolatile memories with van der Waals heterostructures

  • Qiu, Dongri;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.282.1-282.1
    • /
    • 2016
  • The remarkable physical properties of two-dimensional (2D) semiconducting materials such as molybdenum disulfide ($MoS_2$) and tungsten disulfide ($WS_2$) etc. have attracted considerable attentions for future high-performance electronic and optoelectronic devices. The ongoing studies of $MoS_2$ based nonvolatile memories have been demonstrated by worldwide researchers. The opening hysteresis in transfer characteristics have been revealed by different charge confining layer, for instance, few-layer graphene, $MoS_2$, metallic nanocrystal, hafnium oxide, and guanine. However, limited works built their nonvolatile memories using entirely of assembled 2D crystals. This is important in aspect view of large-scale manufacture and vertical integration for future memory device engineering. We report $WS_2$ based nonvolatile memories utilizing functional van der Waals heterostructure in which multi-layered graphene is encapsulated between $SiO_2$ and hexagonal boron nitride (hBN). We experimentally observed that, large memory window (20 V) allows to reveal high on-/off-state ratio (>$10^3$). Moreover, the devices manifest perfect retention of 13% charge loss after 10 years due to large graphene/hBN barrier height. Interestingly, the performance of our memories is drastically better than ever published work related to $MoS_2$ and black phosphorus flash memory technology.

  • PDF

The Potential Energy Surface of BH5 and the Rate of the Hydrogen Scrambling

  • Kim, Kyung-Hyun;Kim, Yong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.763-770
    • /
    • 2003
  • The $BH_5$ molecule, which is suggested as an intermediate of the acidolysis of $BH_4^-$, contains a weak two-electron-three-center bond and it requires extremely high-level of theories to calculate the energy and structure correctly. The structures and energies of $BH_5$ and the transition state for the hydrogen scrambling have been studied using recently developed multi-coefficient correlated quantum mechanical methods (MCCMs). The dissociation energies and the barrier heights agree very well with the previous results at the CCSD(T)/ TZ(3d1f1g, 2p1d) level. We have also calculated the potential energy curves for the dissociation of $BH_5$ to $BH_3$ and $H_2$. The lower levels of theory were unable to plot correct potential curves, whereas the MCCM methods give very good potential energy curves and requires much less computing resources than the CCSD(T)/ TZ(3d1f1g,2p1d) level. The potential energy of the $BH_5$ scrambling has been obtained by the multiconfiguration molecular mechanics algorithm (MCMM), and the rates are calculated using the variational transition state theory including multidimensional tunneling approximation. The rate constant at 300 K is 2.1 × $10^9s^{-1}$, and tunneling is very important.

High speed deposition technique of YSZ film for the superconducting tape (고온초전도테이프 제작을 위한 YSZ 박막의 고속증착방법)

  • Kim Ho-Sup;Shi Dongqui;Chung Jun-Ki;Ko Rock-Kil;Ha Hong-Soo;Song Kyu-Jeong;Youm Do-Jun;Park Chan
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.3
    • /
    • pp.27-32
    • /
    • 2004
  • High temperature superconducting coated conductor has a structure of /< superconducting layer>//. The buffer layer consists of multi layer, and the architecture most widely used in RABiTS approach is CeO$_2$(cap layer)/YSZ(diffusion barrier layer)/CeO$_2$(seed layer). Evaporation technique is used for the CeO$_2$ layer and DC reactive sputtering technique is used for the YSZ layer, A chamber was set up specially for DC reactive sputtering, Detailed features are as following. A separator divided the chamber into two halves a sputtering chamber and a reaction chamber. The argon gas for sputtering target elements flows out of the cap of sputtering gun, and water vapor for reaction with depositing species spouts near the substrate. Turbo pump is connected with reaction chamber. High speed deposition of YSZ film could be achieved in the chamber. Detailed deposition conditions (temperature and partial pressure of reaction gas) were investigated for the rapid growth of high quality YSZ film.

The Development of Soundproof System for the Blasting Noise Reduction in Tunnels (터널 발파소음 감쇠를 위한 방음시스템 개발)

  • 노상림;김욱영;조영천;이상필;유지영
    • Explosives and Blasting
    • /
    • v.22 no.1
    • /
    • pp.67-74
    • /
    • 2004
  • Blasting in urban area has become a serious issue in our living because it causes inconvenience to the resident living by construction area. Therefore, the practical solution and the better method for reducing blasting noise are highly required. However, finding practical solutions for the blasting noise is very difficult due to the lack of basic data and insufficient existing research. In order to overcome the limitation of existing sound barrier, we applied a new material to multi-layer soundproof system in the construction site, Kuksabong Tunnel in Yang Nyung-Ro. The statistical method was used to analyze blasting noise data. Through all these processes, it was verified that the soundproof system in this study was very effective method to decrease blasting noise.

High Luminous Efficiency Flat Light Source with Xe mixture Gas Discharge and Areal Brightness Control Method (제논 혼합가스를 이용한 고효율 면광원과 국부적 밝기 제어 방식)

  • Jung, Jae-Chul;Seo, In-Woo;Oh, Byung-Joo;Whang, Ki-Woong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.153-157
    • /
    • 2009
  • A Highly efficient Mercury-free Flat Fluorescent Lamp (MFFL) with dielectric barrier Xe gas discharge was developed for an alternative of conventional line-type Cold Cathode Fluorescent Lamps (CCFLs) which shows a wide voltage margin and a stable discharge operation for diffuse glow discharge with an application of a auxiliary electrode. Electro-optic characteristics of the MFFL were examined through the changes in ambient temperature, total pressure and Xe partial pressure. the single cell is expanded into a multi-structured configuration to realize a large sized lamp by a simple repetition of the single cells, and a new driving scheme is proposed for an adaptive brightness control using dual auxiliary electrodes and bi-polar drive scheme. In addition, interesting application of this ultra high luminance flat lamp by the optimization of the gas condition and the pattern of the rear phosphor layer is suggested as a good alternative of daylight lamp source

  • PDF

The Meeting Plaza Design around "Myeonmok" Subway Station, Seoul (면목역 만남의 광장 설계)

  • Kim, Sung-Kyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.35 no.1 s.120
    • /
    • pp.20-27
    • /
    • 2007
  • This paper presents a landscape design for the meeting plaza around the "Myeonmok" subway station. The site is located at 120-1 Myeonmok 1-dong, Jnngrang-gu, Seoul, and its area is approximately $2,664.7m^2$. The goal of the design was to make an environmentally friendly meeting and rest place which was related to the subway station. To achieve this goal, concepts of history, tradition, sense of place, community, environmental friendliness, and function were developed. For history, stone sculpture and art tiles symbolizing the paleolithic area were introduced because the site is located near an archaeological site of paleolithic min. For tradition, considering that the site is a 'sailing ship' form in terms of Pungsu theory, a sculpture symbolizing a sailing ship and paving patterns symbolizing waves were introduced. For asense of place, a grass hill, a waterfall and a pond symbolizing an old meadow for horse pasture was introduced. In addition, a multi-purpose round plaza as a meeting place for local community and subway users was proposed. A zelkova grove symbolizing a village forest was proposed for a restand relaxation area. All areas were designed to be environmentally friendly and barrier-free. Concepts for a defensible space wereadapted for safety because the site was a crime-prone area.

Development of a Computer Code for Low-and Intermediate-Level Radioactive Waste Disposal Safety Assessment

  • Park, J.W.;Kim, C.L.;Lee, E.Y.;Lee, Y.M.;Kang, C.H.;Zhou, W.;Kozak, M.W.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.1
    • /
    • pp.41-48
    • /
    • 2004
  • A safety assessment code, called SAGE (Safety Assessment Groundwater Evaluation), has been developed to describe post-closure radionuclide releases and potential radiological doses for low- and intermediate-level radioactive waste (LILW) disposal in an engineered vault facility in Korea. The conceptual model implemented in the code is focused on the release of radionuclide from a gradually degrading engineered barrier system to an underlying unsaturated zone, thence to a saturated groundwater zone. The radionuclide transport equations are solved by spatially discretizing the disposal system into a series of compartments. Mass transfer between compartments is by diffusion/dispersion and advection. In all compartments, radionuclides ate decayed either as a single-member chain or as multi-member chains. The biosphere is represented as a set of steady-state, radionuclide-specific pathway dose conversion factors that are multiplied by the appropriate release rate from the far field for each pathway. The code has the capability to treat input parameters either deterministically or probabilistically. Parameter input is achieved through a user-friendly Graphical User Interface. An application is presented, which is compared against safety assessment results from the other computer codes, to benchmark the reliability of system-level conceptual modeling of the code.

SF3B4 as an early-stage diagnostic marker and driver of hepatocellular carcinoma

  • Shen, Qingyu;Nam, Suk Woo
    • BMB Reports
    • /
    • v.51 no.2
    • /
    • pp.57-58
    • /
    • 2018
  • An accurate diagnostic marker for detecting early-stage hepatocellular carcinoma (eHCC) is clinically important, since early detection of HCC remarkably improves patient survival. From the integrative analysis of the transcriptome and clinicopathologic data of human multi-stage HCC tissues, we were able to identify barrier-to-autointegration factor 1 (BANF1), procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (PLOD3) and splicing factor 3b subunit 4 (SF3B4) as early HCC biomarkers which could be detected in precancerous lesions of HCC, with superior capabilities to diagnose eHCC compared to the currently popular HCC diagnostic biomarkers: GPC3, GS, and HSP70. We then showed that SF3B4 knockdown caused G1/S cell cycle arrest by recovering $p27^{kip1}$ and simultaneously suppressing cyclins, and CDKs in liver cancer cells. Notably, we demonstrated that aberrant SF3B4 overexpression altered the progress of splicing progress of the tumor suppressor gene, kruppel like factor 4 (KLF4), and resulted in non-functional skipped exon transcripts. This contributes to liver tumorigenesis via transcriptional inactivation of $p27^{kip1}$ and simultaneous activation of Slug genes. Our results suggest that SF3B4 indicates early-stage HCC in precancerous lesions, and also functions as an early-stage driver in the development of liver cancer.