• Title/Summary/Keyword: Multi Gas Injection

Search Result 52, Processing Time 0.028 seconds

A Study on the Characteristics of Ignition and Combustion, in a Diesel Spray Using Multi-Component Mixed Fuels (다성분 혼합연료를 이용한 디젤분무의 착화연소특성에 관한 연구)

  • Yoon, Jun-Kyu;Lim, Jong-Han
    • Journal of Energy Engineering
    • /
    • v.16 no.3
    • /
    • pp.120-127
    • /
    • 2007
  • The purpose of this study is experimentally to analyze that the fuel mass fractions of multi-component mixed fuels have an effect on the characteristics of spray ignition and combustion under the ambient conditions of diesel combustion fields. The characteristics of ignition and combustion were investigated by chemiluminescence images and direct photography. The experiments were conducted in the RCEM(rapid compression expansion machine) with optical access. Multi-component fuels mixed with i-octane, n-dodecane and n-hexadecane are injected in RCEM by the electronic control of common rail injector. Experimental conditions set up 42, 72 and 112 MPa in injection pressure, 700, 800 and 900 K in ambient gas temperature. The results show that the ignition delay was dependent on high cetane number. In case of low ambient temperature, the more low boiling point fuels were mixed, the lower luminance regime had a remarkable effect and also shortened diffusion combustion by increasing heat release rate.

Selection of Calibration Approaches and Their Impact on the Quantification of Unknown Samples: Case Study on Reduced Sulfur Gases (환원황화합물의 분석과 검량기준의 선택에 따른 오차발생의 특성)

  • Jo, Hyo-Jae;Hong, One-Feel;Kim, Ki-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.2
    • /
    • pp.133-141
    • /
    • 2011
  • In this study, different calibration approaches for reduced sulfur compounds (RSCs) were investigated by using thermal desorption coupled with gas chromatography (GC) and pulsed flame photometric detection (PFPD). To evaluate the effects of calibration procedures, gaseous standards of 4 RSCs ($H_2S$, $CH_3SH$, DMS, and DMDS) prepared at 10 ppm level were analyzed at 7 loading injection volumes (40, 60, 80, 100, 160, 240, and 320 ${\mu}L$). The results were then compared with calibration curves made with the Z (zero offset) and N (non-zero offset) method. The concentrations of unknown samples were then quantified by using R (ratio) method in which the slope values are compared between standards and samples. Secondly, in A (average) method, results obtained from a multi-point analysis of unknown samples were also averaged to extract representative values for each sample. Results of both experiments showed that analytical error of low molecular weight components (such as $H_2S$ and $CH_3SH$) was greatly expanded with the Z method. In conclusion, the combined application of N-A method was the more realistic approach to reduce biases in the quantification of RSCs.

RE-ACCELERATION MODEL FOR THE 'SAUSAGE' RADIO RELIC

  • KANG, HYESUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.4
    • /
    • pp.145-155
    • /
    • 2016
  • The Sausage radio relic is the arc-like radio structure in the cluster CIZA J2242.8+5301, whose observed properties can be best understood by synchrotron emission from relativistic electrons accelerated at a merger-driven shock. However, there remain a few puzzles that cannot be explained by the shock acceleration model with only in-situ injection. In particular, the Mach number inferred from the observed radio spectral index, Mradio ≈ 4.6, while the Mach number estimated from X-ray observations, MX−ray ≈ 2.7. In an attempt to resolve such a discrepancy, here we consider the re-acceleration model in which a shock of Ms ≈ 3 sweeps through the intracluster gas with a pre-existing population of relativistic electrons. We find that observed brightness profiles at multi frequencies provide strong constraints on the spectral shape of pre-existing electrons. The models with a power-law momentum spectrum with the slope, s ≈ 4.1, and the cutoff Lorentz factor, γe,c ≈ 3−5×104, can reproduce reasonably well the observed spatial profiles of radio fluxes and integrated radio spectrum of the Sausage relic. The possible origins of such relativistic electrons in the intracluster medium remain to be investigated further.

Experimental and Numerical Investigation of the Effect of Load and Speed of T-GDI Engine on the Particle Size of Blow-by Gas and Performance of Oil Mist Separator (T-GDI 엔진의 속도 및 하중이 블로우바이 가스의 오일입자 크기와 오일분리기 성능에 미치는 영향에 대한 실험 및 수치적 연구)

  • Jeong, Soo-Jin;Oh, Kwangho
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.162-169
    • /
    • 2020
  • The worldwide focus on reducing the emissions, fuel and lubricant consumption in T-GDI engines is leading engineers to consider the crankcase ventilation and oil mist separation system as an important means of control. In today's passenger cars, the oil mist separation systems mainly use the inertia effect (e.g. labyrinth, cyclone etc.). Therefore, this study has investigated high efficiency cylinder head-integrated oil-mist separator by using a compact multi-impactor type oil mist separator system to ensure adequate oil mist separation performance. For this purpose, engine dynamometer testing with oil particle efficiency measurement equipment and 3D two-phase flow simulation have been performed for various engine operating conditions. Tests with an actual engine on a dynamometer showed oil aerosol particle size distributions varied depending on operating conditions. For instance, high rpm and load increases bot only blow-by gases but the amount of small size oil droplets. Submicron-sized particles (less than 0.5 ㎛) were also observed. It is also found that the impactor type separator is able to separate nearly no droplets of diameter lower than 3 ㎛. CFD results showed that the complex aerodynamics processes that lead to strong impingement and break-up can strip out large droplets and generate more small size droplets.

Technical Consideration for Production Data Analysis with Transient Flow Data on Shale Gas Well (셰일가스정 천이유동 생산자료분석의 기술적 고려사항)

  • Han, Dong-kwon;Kwon, Sun-il
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.1
    • /
    • pp.13-22
    • /
    • 2016
  • This paper presents development of an appropriate procedure and flow chart to analyze shale gas production data obtained from a multi-fractured horizontal well according to flow characteristics in order to calculate an estimated ultimate recovery. Also, the technical considerations were proposed when a rate transient analysis was performed with field production data occurred to only $1^{st}$ transient flow. If production data show the $1^{st}$ transient flow from log-log and square root time plot analysis, production forecasting must be performed by applying different method as before and after of the end of $1^{st}$ linear flow. It is estimated by an area of stimulated reservoir volume which can be calculated from analysis results of micro-seismic data. If there are no bottomhole pressure data or micro-seismic data, an empirical decline curve method can be used to forecast production performance. If production period is relatively short, an accuracy of production data analysis could be improved by analyzing except the early production data, if it is necessary, after evaluating appropriation with near well data. Also, because over- or under-estimation for stimulated reservoir volume could take place according to analysis method or analyzer's own mind, it is necessary to recalculate it with fracture modeling, reservoir simulation and rate transient analysis, if it is necessary, after adequacy evaluation for fracture stage, injection volume of fracture fluid and productivity of producers.

Investigation on emission characteristics of nitrous oxide from marine diesel engine (선박용 디젤엔진에서 아산화질소의 배출특성에 대한 연구)

  • Yoo, Dong-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1051-1056
    • /
    • 2014
  • Nitrous oxide ($N_2O$) is naturally generated from biological activity, such as bacteria's material exchange. However, recent $N_2O$ concentration in the atmosphere has being increased by the human activities such as industrial growth. One of factors to increase $N_2O$ concentration in the atmosphere is a $N_2O$ emission caused by the combustion of marine fuel oils. The marine transportation presently handles over 99 percent of the international freight cargoes and the number of ship is continuously increasing with increment of cargoes. In this study, author conducted a series of the experimental investigations on which combustion of fuels containing different element concentrations used in a 4-stroke marine diesel engine affect $N_2O$ emissions in the exhaust gas. Moreover, it is assessed on the extent to which fuel combustion patterns in the combustion chamber affect $N_2O$ emissions.

Effect of Controlling Exhaust Valve Timing on Engine Efficiency in LIVC and EIVC States in a 2-Cylinder Small Turbo Gasoline Engine (2기통 소형 터보가솔린엔진에서 배기 밸브 타이밍 제어에 따른 LIVC, EIVC 상태에서의 엔진 효율 영향)

  • Jang, Jinyoung;Woo, Youngmin;Shin, Youngjin;Ko, Ahyun;Jung, Yongjin;Cho, Chongpyo;Kim, Gangchul;Pyo, Youngdug;Han, Myunghoon
    • Journal of ILASS-Korea
    • /
    • v.27 no.3
    • /
    • pp.117-125
    • /
    • 2022
  • This study examines whether engine fuel efficiency is improved by optimization of the exhaust valve timing in a state where the intake valve timing has been optimized in a small turbo gasoline engine that has intake cams and exhaust cams with fixed valve opening periods. When the exhaust valve is opened late, the expansion stroke is longer, and the efficiency can be improved. A 2-cylinder turbo gasoline engine with 0.8 liters of displacement and an MPI (Multi Point Injection) fuel system was used. The engine was operated at 1,500 and 3,000 rpm, and the load conditions included a partial load of 50 N·m and a high load of 70 N·m. Data was recorded as the exhaust valve timing was controlled, and this was used to calculate the efficiency of combustion using a heat release, the fuel conversion efficiency, and the pumping loss. Results and the hydrocarbon concentrations in the exhaust gas were compared for each condition. Experiment results confirmed that additional fuel efficiency improvements are possible through exhaust valve timing control at 1,500 rpm and 50 N·m. However, in other operating conditions, fuel efficiency improvements could not be obtained through exhaust valve timing control because cases where the pumping loss and fuel/air mixture slip increased when the exhaust valve timing changed and the fuel efficiency declined.

The Flow-rate Measurements in a Multi-phase Flow Pipeline by Using a Clamp-on Sealed Radioisotope Cross Correlation Flowmeter (투과 감마선 계측신호의 Cross correlation 기법 적용에 의한 다중상 유체의 유량측정)

  • Kim, Jin-Seop;Kim, Jong-Bum;Kim, Jae-Ho;Lee, Na-Young;Jung, Sung-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.1
    • /
    • pp.13-20
    • /
    • 2008
  • The flow rate measurements in a multi-phase flow pipeline were evaluated quantitatively by means of a clamp-on sealed radioisotope based on a cross correlation signal processing technique. The flow rates were calculated by a determination of the transit time between two sealed gamma sources by using a cross correlation function following FFT filtering, then corrected with vapor fraction in the pipeline which was measured by the ${\gamma}$-ray attenuation method. The pipeline model was manufactured by acrylic resin(ID. 8 cm, L=3.5 m, t=10 mm), and the multi-phase flow patterns were realized by an injection of compressed $N_2$ gas. Two sealed gamma sources of $^{137}Cs$ (E=0.662 MeV, ${\Gamma}$ $factor=0.326\;R{\cdot}h^{-1}{\cdot}m^2{\cdot}Ci^{-1}$) of 20 mCi and 17 mCi, and radiation detectors of $2"{\times}2"$ NaI(Tl) scintillation counter (Eberline, SP-3) were used for this study. Under the given conditions(the distance between two sources: 4D(D; inner diameter), N/S ratio: $0.12{\sim}0.15$, sampling time ${\Delta}t$: 4msec), the measured flow rates showed the maximum. relative error of 1.7 % when compared to the real ones through the vapor content corrections($6.1\;%{\sim}9.2\;%$). From a subsequent experiment, it was proven that the closer the distance between the two sealed sources is, the more precise the measured flow rates are. Provided additional studies related to the selection of radioisotopes their activity, and an optimization of the experimental geometry are carried out, it is anticipated that a radioisotope application for flow rate measurements can be used as an important tool for monitoring multi-phase facilities belonging to petrochemical and refinery industries and contributes economically in the light of maintenance and control of them.

Experimental Results of New Ion Source for Performance Test

  • Kim, Tae-Seong;Jeong, Seung-Ho;Jang, Du-Hui;Lee, Gwang-Won;In, Sang-Yeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.269-269
    • /
    • 2012
  • A new ion source has been designed, fabricated, and installed at the NBTS (Neutral Beam Test Stand) at the KAERI (Korea Atomic Energy Research Institute) site. The goalis to provide a 100 keV, 2MW deuterium neutral beam injection as an auxiliary heating of KSTAR (Korea Super Tokamak Advanced Research). To cope with power demand, an ion current of 50 A is required considering the beam power loss and neutralization efficiency. The new ion source consists of a magnetic cusp bucket plasma generator and a set of tetrode accelerators with circular copper apertures. The plasma generator for the new ion source has the same design concept as the modified JAEA multi-cusp plasma generator for the KSTAR prototype ion source. The dimensions of the plasma generator are a cross section of $59{\times}25cm^2$ with a 32.5 cm depth. The anode has azimuthal arrays of Nd-Fe permanent magnets (3.4 kG at surface) in the bucket and an electron dump, which makes 9 cusp lines including the electron dump. The discharge properties were investigated preliminarily to enhance the efficiency of the beam extraction. The discharge of the new ion source was mainly controlled by a constant power mode of operation. The discharge of the plasma generator was initiated by the support of primary electrons emitted from the cathode, consisting of 12 tungsten filaments with a hair-pin type (diameter = 2.0 mm). The arc discharge of the new ion source was achieved easily up to an arc power of 80 kW (80 V/1000 A) with hydrogen gas. The 80 kW capacity seems sufficient for the arc power supply to attain the goal of arc efficiency (beam extracted current/discharge input power = 0.8 A/kW). The accelerator of the new ion source consists of four grids: plasma grid (G1), gradient grid (G2), suppressor grid (G3), and ground grid (G4). Each grid has 280 EA circular apertures. The performance tests of the new ion source accelerator were also finished including accelerator conditioning. A hydrogen ion beam was successfully extracted up to 100 keV /60 A. The optimum perveance is defined where the beam divergence is at a minimum was also investigated experimentally. The optimum hydrogen beam perveance is over $2.3{\mu}P$ at 60 keV, and the beam divergence angle is below $1.0^{\circ}$. Thus, the new ion source is expected to be capable of extracting more than a 5 MW deuterium ion beam power at 100 keV. This ion source can deliver ~2 MW of neutral beam power to KSTAR tokamak plasma for the 2012 campaign.

  • PDF

Development of a Vertical Multi-stage Ammonia Stripping Reactor for Recovering Ammonia from wastewater with High Nitrogen Concentrations(I) (고농도 질소폐수로부터 암모니아 회수를 위한 다단수직형 암모니아스트리핑조 개발(I))

  • Lee, Jae Myung;Choi, Hong-bok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.2
    • /
    • pp.41-48
    • /
    • 2017
  • A vertical multi-stage ammonia stripping reactor using E-PFR, which has been proved to be superior in anaerobic and aerobic treatment, was developed and a lab scale experiment was conducted. According to the change of stage number condition, the removal rate of the ammonia nitrogen in the reactor with 0-stage was about 52.5% after 8 hours (pH 10, temperature $35^{\circ}C$, and the air/liquid ratio $3min^{-1}$) However, in the reactor with 5-stage, the removal efficiency was about 62.6%. According to the change of pH condition, the removal rate of ammonia nitrogen was about 42.6% at pH 9 after 8 hours, and was about 74.4% at pH 11 (5-stage reactor, temperature $35^{\circ}C$, and the air/liquid ratio $3min^{-1}$). According to the change of temperature condition, the removal rate of the ammonia nitrogen was about 51% at $25^{\circ}C$ after 8 hours (5-stage reactor, pH 10, and the air/liquid ratio $3min^{-1}$), and was about 87.2% at $45^{\circ}C$. According to the change of air injection volume condition, the removal rate of the ammonia nitrogen was about 45.8% at $2min^{-1}$ after 8 hours (5-stage reactor, pH 10, and at $35^{\circ}C$). and was about 75% at $4min^{-1}$. Based on these results, we will follow up the applicability of the actual plant in the future through continuous operation evaluation.