• Title/Summary/Keyword: Multi Channel Receiver

Search Result 254, Processing Time 0.032 seconds

Joint Kalman Channel Estimation and Turbo Equalization for MIMO OFDM Systems over Fast Fading Channels

  • Chang, Yu-Kuan;Ueng, Fang-Biau;Shen, Ye-Shun;Liao, Chih-Yuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5394-5409
    • /
    • 2019
  • The paper investigates a novel detector receiver with Kalman channel information estimator and iterative channel response equalization for MIMO (multi-input multi-output) OFDM (orthogonal frequency division multiplexing) communication systems in fast multipath fading environments. The performances of the existing linear equalizers (LE) are not good enough over most fast fading multipath channels. The existing adaptive equalizer with decision feedback structure (ADFE) can improve the performance of LE. But error-propagation effect seriously degrades the system performance of the ADFE, especially when operated in fast multipath fading environments. By considering the Kalman channel impulse response estimation for the fast fading multipath channels based on CE-BEM (complex exponential basis expansion) model, the paper proposes the iterative receiver with soft decision feedback equalization (SDFE) structure in the fast multipath fading environments. The proposed SDFE detector receiver combats the error-propagation effect for fast multipath fading channels and outperform the existing LE and ADFE. We demonstrate several simulations to confirm the ability of the proposed iterative receiver over the existing receivers.

SPMC-MAC : Slim Preamble Multi-Channel MAC Protocol with Transmission Power Control in Wireless Sensor Networks (무선 센서 네트워크에서 다중 채널과 전송세기 제어를 이용한 맥 프로토콜)

  • Yoon, Jang-Muk;Bahk, Sae-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10B
    • /
    • pp.876-884
    • /
    • 2008
  • In this paper, we propose an asynchronous MAC protocol to minimize energy usage and to maximize data throughput for a wireless sensor network in multi channel environments. Our proposed SPMC-MAC (Slim Preamble Multi-Channel Media Access Control) adopts the preamble sliming mechanism proposed in [6] that takes advantage of the knowledge about the wakeup time of the receiver node. The preamble contains the receiver's ID and a randomly selected channel ID for data communication, and it is transmitted over a dedicated common channel. The power control has the benefit of keeping an appropriate number of nodes with the communication range, resulting in reduced collision and interference. We compare our SPMC-MAC and X-MAC extensively in terms of energy consumption and throughput using mathematical analysis and simulation.

Analysis of Transmitter & Receiver of W-CDMA System using Spcae-Time Code and Performance Analysis over JTC Realistic Channel Model (시.공간 부호를 적용한 W-CDMA 시스템의 송.수신부 분석 및 JTC 실측 채널 모델에서의 성능 분석)

  • 정호섭;김병기;전준수;김철성
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.101-104
    • /
    • 2003
  • In this paper, we analyze the performance of transmitter and receiver of W-CDMA system using the space-time code in downlink over JTC realistic channel model. We can get a diversity gain by using the space time code. We also apply the RAKE receiver to improve a performance in multi-path fading channel environment.

  • PDF

The Analysis of Performance for W-CDMA System using Channel Coding & Space-Time Code in Wideband Multipath Channel. (광대역 다중 경로 채널에서 채널 코딩과 시공간 부호를 적용한 W-CDMA의 성능분석)

  • 박정현;김정미;정호섭;김철성
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.277-280
    • /
    • 2003
  • In this paper, we analyze the performance of transmitter and receiver of W-CDMA system using the channel coding and space time code in downlink over ITU-R realistic channel model. We can improve the reliability of communications and increase the data rate by channel coding, and we can get a diversity gain by using the space time code over fading channels. We also apply the RAKE receiver to improve tile performance in multi-Path fading channel environment.

  • PDF

DESIGN OF THE IF DISTRIBUTOR AND V/F CONVERTER FOR RECEIVER SYSTEM (우주전파 수신기를 위한 IF 분배기 및 V/F 컨버터 설계)

  • Kim, Kwang-Dong;Yim, In-Sung;Byun, Do-Young;Song, Min-Gyu
    • Publications of The Korean Astronomical Society
    • /
    • v.22 no.3
    • /
    • pp.83-87
    • /
    • 2007
  • We designed the Intermediate Frequency(IF) distributor for multi beam backend system and manufactured Voltage to Frequency Converter(VFC) to measure the multi-beam receiver performance. Multi beam receiver has 15 channel receivers and can get 15 spectrums at once. The multi beam receiver has more observation efficiency than single beam receiver. We manufactured the 15 IF distributors to distribute IF signal for Autocorrelation spectrometer that is radio signal processor. Also, we manufactured the VF Converter to test the performance measurement of receiver for Korea VLBI Network(KVN) system which is under-construct in Seoul, Ulsan and Jeju. As a result of performance measurement, we could obtain linearity of 99.4% on the input power vs output frequency and measured the operating range of input frequency.

Adaptive Channel-Matched Extended Alamouti Space-Time Code Exploiting Partial Feedback

  • Badic, Biljana;Rupp, Markus;Weinrichter, Hans
    • ETRI Journal
    • /
    • v.26 no.5
    • /
    • pp.443-451
    • /
    • 2004
  • Since the publication of Alamouti's famous space-time block code, various quasi-orthogonal space-time block codes (QSTBC) for multi-input multi-output (MIMO) fading channels for more than two transmit antennas have been proposed. It has been shown that these codes cannot achieve full diversity at full rate. In this paper, we present a simple feedback scheme for rich scattering (flat Rayleigh fading) MIMO channels that improves the coding gain and diversity of a QSTBC for 2$^n$ (n=3, 4, ${\cdots}$) transmit antennas. The relevant channel state information is sent back from the receiver to the transmitter quantized to one or two bits per code block. In this way, signal transmission with an improved coding gain and diversity near to the maximum diversity order is achieved. Such high diversity can be exploited with either a maximum-likelihood receiver or low-complexity zero-forcing receiver.

  • PDF

The Design and fabrication of Multi Channel Receiver for Radar System (레이더용 다중채널 수신기 설계 및 제작에 관한 연구)

  • Lee, Ki-Hong;Kim, Wan-Sik;Kim, Gye-Kuk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.10
    • /
    • pp.131-136
    • /
    • 2011
  • In this paper, we fabricate multi channel receiver for radar system. This receiver at X-band can be received 8 signal of an identical characteristic, dynamic range has more than 80[dB]. To process direct received signals, this system has the built-in two digital de-modulators which offer the minimum loss on the receiving signal path and has high stability by adding Built-In Test. The gain, noise figure, difference of amplitude and phase on the signal path is respectively 20${\pm}$2[dB], 19[dB], ${\pm}$2[dB], $10^{\circ}$ and below.

Concentrated Solar Flux Modeling for the Heat Transfer Analysis of Multi-Channeled Solar Receivers (다채널 태양열 흡수기의 열전달 해석을 위한 집광 열유속 모델링)

  • Lee, Hyun-Jin;Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.41-47
    • /
    • 2011
  • The volumetric solar receiver is a key element of solar power plants using air. The solar flux distribution inside the receiver should be a priori known for its heat transfer analysis. Previous works have not considered characteristics of the solar flux although they change with radiative properties of receiver materials and receiver geometries. A numerical method, which is based on the Monte Carlo ray-tracing method, was developed in the current work. The solar flux distributions inside multi-channeled volumetric solar receivers were calculated when light is concentrated at the KIER solar furnace. It turned out that 99 percentage of the concentrated solar energy is absorbed within 15mm channel length for the channel radius smaller than 1.5mm. If the concentrated light is assumed to be diffuse, the absorbed solar energy at the channel entrance region is over predicted while the light penetrates more deeply into the channel. Once the presented results are imported into the heat transfer analysis, one could examine effects of material property and geometry of the receiver on air temperature profiles.

Real-time Implementation of a Tone Sender/Receiver on a High Performance DSP (고성능 DSP를 이용한 톤 송수신기의 실시간 구현)

  • 최용수;함정표;조성범;강태익;윤정현
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.276-285
    • /
    • 2003
  • In this paper, we present real-time implementation of a R2MFC/DTMF (R2 Multi Frequency Combinations/Dual Tone Multiple Frequency) tone receiver/sender using a high performance DSP (Digital Signal Processor) and apply it to a carrier class VoIP (Voice over Internet Protocol) gateway system. The Receiver utilizes the Goertzel filter and the sender adopts the harmonic resonant filter. We describe, in detail, the techniques of multi-channel real-time implementation on a Texas Instruments TMS320C62x DSP such as effective PCM (Pulse Code Modulation) in/out by means of DMA (Direct Memory Access) and McBSP (Multi Channel Buffered Serial Port) and message communication via HPI (Host Port Interface), etc. From experimental results, we confirmed that the optimized code provided 780 channel capacity at 250㎒ C6202, and the our R2MFC/DTMF receiver/sender met ITU-T (International Telecommunication Union-Telecommunication) specifications.

An ICI Canceling 5G System Receiver for 500km/h Linear Motor Car

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.27-34
    • /
    • 2023
  • This paper proposed an Inter-Carrier-Interference (ICI) Canceling Orthogonal Frequency Division Multiplexing (OFDM) receiver for 5G mobile system to support 500 km/h linear motor high speed terrestrial transportation service. A receiver in such high-speed train sees the transmission channel which is composed of multiple Doppler-shifted propagation paths. Then, a loss of sub-carrier orthogonality due to Doppler-spread channels causes ICI. The ICI Canceler is realized by the following three steps. First, using the Demodulation Reference Symbol (DMRS) pilot signals, it analyzes three parameters such as attenuation, relative delay, and Doppler-shift of each multi-path component. Secondly, based on the sets of three parameters, Channel Transfer Function (CTF) of sender sub-carrier number 𝒏 to receiver sub-carrier number 𝒍 is generated. In case of 𝒏≠𝒍, the CTF corresponds to ICI factor. Thirdly, since ICI factor is obtained, by applying ICI reverse operation by Multi-Tap Equalizer, ICI canceling can be realized. ICI canceling performance has been simulated assuming severe channel condition such as 500 km/h, 2 path reverse Doppler Shift for QPSK, 16QAM, 64QAM and 256QAM modulations. In particular, for modulation schemes below 16QAM, we confirmed that the difference between BER in a 2 path reverse Doppler shift environment and stationary environment at a moving speed of 500 km/h was very small when the number of taps in the multi-tap equalizer was set to 31 taps or more. We also confirmed that the BER performance in high-speed mobile communications for multi-level modulation schemes above 64QAM is dramatically improved by the use of a multi-tap equalizer.