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Since the publication of Alamouti’s famous space-time 
block code, various quasi-orthogonal space-time block 
codes (QSTBC) for multi-input multi-output (MIMO) 
fading channels for more than two transmit antennas have 
been proposed. It has been shown that these codes cannot 
achieve full diversity at full rate. In this paper, we present 
a simple feedback scheme for rich scattering (flat Rayleigh 
fading) MIMO channels that improves the coding gain 
and diversity of a QSTBC for 2n ( L,, 43=n ) transmit 
antennas. The relevant channel state information is sent 
back from the receiver to the transmitter quantized to one 
or two bits per code block. In this way, signal transmission 
with an improved coding gain and diversity near to the 
maximum diversity order is achieved. Such high diversity 
can be exploited with either a maximum-likelihood 
receiver or low-complexity zero-forcing receiver. 
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I. Introduction 

Since the work of Alamouti [1], several orthogonal and quasi-
orthogonal space-time code designs have been investigated. The 
Alamouti code achieves diversity two with full data rate as it 
transmits two symbols in two time intervals. It has been shown  
in [2], that an orthogonal full-rate design, offering full diversity 
for any arbitrary complex symbol constellation, is limited to the 
case of two transmit antennas. Data-rate or decoding simplicity 
must be sacrificed if the number of transmit antennas is increased. 
To preserve the full rate at a small loss in complexity and 
performance, quasi-orthogonal designs have been proposed [3]-[6]. 

Space-time block codes (STBC) are assumed to work under 
rich scattering channel conditions. In contrast, line-of-sight 
conditions are typically more suited to beamforming methods, 
where apriori knowledge of the channel is required at the 
transmitter [7]. Most STBCs are designed under the assumption 
that the transmitter has no knowledge about the channel. On the 
other hand, it has been shown that an outage performance with 
perfect channel state information (CSI) available at the 
transmitter and at the receiver is better compared to the case 
when only the receiver has perfect knowledge of the channel. 
For instance, with complete CSI at the transmitter, data can be 
transmitted on the eigenvector related to the largest eigenvalue 
[8] providing the maximum transmit array gain. 

Research on adapting the block code to partial channel 
knowledge has been an intensive area of research, with several 
design strategies coming up recently. Low coding complexity,  
high diversity and a better code rate of the orthogonal space-
time codes can be obtained with only partial feedback of CSI to 
the transmitter [9], [10]. In [11] the transmit power varies 
dependent on the channel characteristics. In this way, the 
outage probability can be minimized if the receiver returns only 
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roughly quantized amplitude information about the channel. 
In [9], a simple and efficient extension of known orthogonal 

STBCs for more transmit antennas exploiting very small 
amounts of feedback from the receiver to the transmitter has 
been proposed, similar to the extended Alamouti STBCs  (EA-
STBCs) discussed in this paper. In [9], the extension of a simple 
Alamouti code to a full-rate STBC using four transmit antennas 
is worked out in detail. In this example, code orthogonality is 
preserved such that a simple matched filter receiver can be used 
for an optimal detection. Selecting one out of two code matrices 
according to one-bit feedback information per code block leads 
to full diversity and furthermore, even to some coding gain (array 
gain). However, the scheme also requires perfect 
synchronization of the transmitter and receiver based on the 
feedback. If such synchronization is erroneous or the feedback 
information is decoded incorrectly this concept easily looses 
diversity; in the case of four transmit and one receive antennas, 
the diversity drops from diversity four to diversity two. 

In this paper, a simple and effective way to adapt a full-rate 
EA-STBC over 2n transmit antennas to the actual channel is 
proposed achieving full diversity, nearly full orthogonality, and 
at the same time a low-bit error rate. However, there is not a 
single code with such performance capability but an entire 
family of codes derived from the first one by permutations of 
the transmit antennas and sign changes. A feedback system 
returning one or two bits per code block to the transmitter is 
presented. Depending on the feedback, the transmitter switches 
between two or four EA-STBCs members of this family. The 
receiver chooses the code that achieves the highest diversity 
and minimizes the channel-dependent interference parameter 
which is responsible for the non-orthogonality of the EA-
STBC. With this simple scheme, a ZF (zero forcing) as well as 
an ML (maximum likelihood) receiver achieves nearly 
optimum diversity. 

The paper is organized as follows. First, a short overview of 
the well-known Alamouti scheme is given, and the EA-STBC 
as one example of an efficient QSTBCs for four transmit 
antennas is defined. In section III, the generation of the 
feedback information is explained and the probability of the 
channel-dependent random variable responsible for the signal 
interference is derived. This random variable controls the 
feedback information. Simulation results are presented in 
section IV and conclusions are given in section V. 

II. System Design Based on Extended Alamouti 
Schemes 

1. Review of the 2×1 Alamouti Scheme  

A very simple and effective coding scheme for two transmit 

antennas and a single receive antenna has been introduced by 
Alamouti [1]. Data block (s1 ,s2

*) is sent over the first antenna 
and block (s2 , -s1

*) over the second antenna, where * denotes 
complex conjugation. Assuming a flat-fading channel with 
transmission coefficients h1 and h2, the received vector r is 
formed by stacking two consecutive received data samples 
r=[r1, r2]T in time, resulting in 

,12 vhSr +=                   (1) 

where h=[h1, h2]T is the complex channel vector and v is the 
noise vector at the receiver. Here, the symbol block S12 is 
defined as 
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or in short notation 

 v sHy ,+= v                  (5)  

where vector Trr ],[ *
21=y has been introduced. The resulting 

virtual (2×2) channel matrix Hv is orthogonal, i.e., 

.2
2IHHHH hH

vvv
H
v ==  

I2 is the 2×2 identity matrix and h2 is the power gain of the 
channel with 2

2
2

1
2 |||| hhh += . Due to this orthogonality, the 

Alamouti scheme decouples the MISO channel into two 
virtually independent channels with channel gain h2 and 
diversity d = 2. 
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Fig. 1. Extended Alamouti scheme. 
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2. Extended Alamouti Scheme 

Two Alamouti codes for two transmit antennas are used as 
building blocks to design the EA-STBC for four transmit 
antennas. The resulting EA-STBC extends over four time slots 
and is described by the following signal matrix [3], [12]: 
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This EA-STBC results as an “alamoutisation”1) of basic (2×2) 
Alamouti codes: 

.*
1

*
2

21








−

=
SS

SS
S                 (7) 

Assuming a single receive antenna, the received signals within 
four successive time slots are given as 
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With complex conjugation of the second and third equations 
cited above, we get 
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resulting in the following equivalent (4×4) virtual MIMO 
transmission scheme with the matrix equation 

 v, sHy += v                   (9) 

                                                               
1) We use the term alamoutisation as introduced in [4] to indicate this particular method as 

being different from an orthogonalizing method like Gram-Schmidt. 

where 
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is a virtual (4×4) channel transmission matrix. In this way, a 
virtual, specifically structured MIMO channel with four transmit 
and four virtual receive antennas is obtained. In section III.1 
ahead, it will be shown that Hv is “nearly orthogonal.” 

In this paper, we consider ZF as well as ML receivers. The 
particular structure of the proposed codes allows a low 
complexity solution for the ML receiver. More details about 
this can be found in [4]. However, if high order constellations 
are considered to be transmitted, a ZF receiver certainly 
exhibits lower complexity and is thus also of interest. We 
therefore compare the results of ML and ZF receivers in our 
simulations in section IV. Alternatively, an MMSE receiver can 
be applied as well. However, from a complexity point of view, 
it is very similar to the ZF receiver. Since in practical 
applications the noise variance is typically unknown and needs 
to be estimated, this type of receiver is not covered in this paper. 

In a very similar way as explained in [6], “alamoutisation” 
can be applied iteratively to obtain larger QSTBCs for 2n 
antennas with L,4,3  =n . The number of receive antennas 
can be selected freely and does not depend on the code. 

In [4], transmit antenna numbers not being multiples of two 
are considered. While such systems are not discussed in this 
paper, the presented feedback approaches can be extended to 
them in a straight-forward manner. 
 

 

Fig. 2. Scheme with partial feedback. 
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III. Feedback Approaches 

1. EA-STBC Scheme with One-Channel-Information Bit 
Per Code Block Returned to the Transmitter 

The feedback scheme using one bit per code block sent from 
the receiver to the transmitter characterizing the channel will be 
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explained first. The scheme is depicted in Fig. 2. Four transmit 
antennas, one receive antenna, and channel transfer vector 
h=[h1, h2, h3, h4]T are considered. The channel transfer elements 
may fade in any arbitrary way but are assumed to be constant 
during the code block of length 4. The signal transmission can 
be described analogous to (1) by 

r=Sh+v,                  (11) 

where r is the (4×1) vector of the received signals from the 
code-block within four successive time slots. However, S is 
now either S1 as defined in (6) or S2 defined in (12) depending 
on the feedback bit b defined below, and v is the (4×1) noise 
vector with complex Gaussian components with zero mean 
and variance σ2.  
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Obviously, S1 and S2 differ only in the sign of the transmitted 
symbols in the first column. Note that an entire family of EA-
STBCs can be derived by sign changes and, alternatively, 
permutations of the transmit antenna order. All of the so 
obtained codes behave equivalently in terms of their near-
orthogonality, their complexity and their BER performance for 
random channels. For a fixed channel, however, they behave 
differently, as will be shown in the following. As before, (11) 
can be rewritten in the form shown in (5) as 

 v, sHy += v  

with s=[s1, s2, s3, s4]T and the virtual effective channel matrix 
Hv that is now equal to 



















−−
−−

−−
=

1234

*
2

*
1

*
4

*
3

*
3

*
4

*
1

*
2

4321

1

hhhh
hhhh
hhhh
hhhh

vH ,  if S = S1 ,   (13) 

or 





















−−−

−−−

−−−−

−

=

1234

*
2

***
3

*
3

*
4

**
2

4321

2

14

1

hhhh

hhhh

hhhh

hhhh

vH ,  if S = S2 .  (14) 

In both cases we obtain [12] 
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It is well known that G should approximate a scaled identity-
matrix as far as possible to achieve full diversity and an 
optimum BER performance [4]. If G is a scaled identity matrix, 
we have an orthogonal STBC and we could use a simple linear 
matrix multiplication of y by H

vH  (corresponding to a simple 
matched filter operation) at the receiver to decouple the channel 
perfectly and to get full diversity order d=4. Otherwise, Xi 
leads to a partial interference between h1 and h4 and between h2 

and h3. This means X should be as small as possible. As Gi 
indicates, our scheme inherently supports full diversity d = 4, if  
Xi can be made zero. 

Therefore, our strategy is to transmit the code, S1 or S2 , that 
minimizes ||X . By simply changing the sign of the first 
column of the EA-STBC we change the sign of the first term 
of the channel-dependent interference parameter X given in 
(17) and (18). In this way we obtain very small values of X due 
to the fact that in (17) and (18) two approximately equal valued 
terms are subtracted and thus at least partially compensate each 
other. In any case, some performance loss due to the non 
vanishing value of X is expected resulting from the residual 
interference between signal elements s1 and s4, or s2 and s3, 
respectively. As it is assumed that the receiver has full 
information of the channel, knowing h1 to h4 , the receiver can 
compute X1 and X2 due to (17) and (18). With this  
information, the receiver returns the feedback bit b, informing 
the transmitter to select code block Si (i = 1, 2) which leads to 
the smaller value of Xi. With this information, the transmitter 
switches between EA-STBC S1 and S2 such that the resulting  
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||X  will be min |).||,(| 21 XX Obviously, the control 
information sent back to the transmitter only needs one 
feedback bit per code block. In our simulations it is assumed 
that the channel varies slowly such that the delay of the 
feedback information can be neglected. 

2. Derivation of the PDF of Interference Parameter X 

If the channel coefficients hi are independent identically 
distributed (i.i.d.) complex Gaussian variables, then the 
probability density function of X is given in [12] as 
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To derive the probability density function of min |)||,(| 21 XX  in 
the case of one feedback bit per code block, the PDFs of two 
random variables need to be considered. For this purpose, a new 
random variable is defined as 
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Due to its symmetry, only the one-sided (positive) PDF is 
considered: 
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where X1, X2 are assumed to be two statistically independent 
random variables. The final solution for fW(w) is 
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Simulation results verifying this are presented in Fig. 3. 

3. Two Bits Fed Back to the Transmitter 

In a similar way as discussed in section III 1, we can switch 
between four different EA-STBCs at the transmitter. Let us 
discuss the case when we are allowed to send two bits b1 , b2 as 
feedback information to the transmitter. Now, we let the 
transmitter switch between four very similar EA-STBCs, 
namely S1 and S2 defined in (6) and (12), and two new code 
matrices S3 , and S4 defined as 
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and 
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With S3 and S4, the corresponding channel matrix Hv is equal to: 
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and 
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The code matrices S3 and S4 are chosen in such a way that 
the resulting Grammian matrices G3 and G4 have the same 
quasi-orthogonal structure as in (15) with quite different values 
of the interference parameters X3 and X4. The resulting matrices 
G3 and G4 have exactly the same structure as G1 and G2 with 
exactly the same channel gain, h2 (16). The channel-dependent 
interference parameter X in the case of S3 and S4 results now in 
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Using two feedback bits, the transmitter can switch between 
four space-time block codes, Si, i=1, 2, 3, 4, to decrease 
further the influence of the interference parameter Z defined in 
(28) and to provide still higher diversity and a smaller bit-error 
ratio than in the case of relying only on two STBCs. The four 
EA-STBCs, S1 to S4, have been chosen in such a way that a 
code change can be implemented in a very simple way and that 
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the resulting interference parameter Z gets as small as possible. 
In Fig. 3, the PDFs of the resulting interference parameters for 
all three cases: no feedback, only S1 used; one feedback bit, the  
transmitter can switch between S1 and S2 ; and 2 feedback bits, 
the transmitter can switch between S1 to S4. It turns out that the 
mean value of the modules of the resulting interference 
parameter can be reduced from 0.3 in the case of a single EA-
STBC, to 0.2 if two EA-STBCs are available, and to 0.1 if four 
EA-STBCs are available at the transmitter. 

In a similar way as described above, the feedback scheme can 
be applied to a family of EA-STBCs for 2n transmit antennas 
with L,4,3      =n . More details about this generalization are 
reported in [6]. It turns out that this simple scheme of code 
switching can be applied to any QSTBC, e.g. the ABBA code 
[5]. This code has been investigated thoroughly in comparison 
to the EA-STBC, the results of which are documented in [15]. 
In brief, the EA-STBC and the ABBA code show the same 
BER performance in uncorrelated channels, but in highly 
correlated channels the ABBA gets dramatically worse, leading 
to an extremely poor performance. Applying our simple 
switching scheme to the ABBA code, the ABBA code shows 
the same performance as the EA-STBC even in highly 
correlated channels. In fact, applying our simple feedback 
scheme, the specific choice of QSTBC (or the family 
members) is not of further importance if we minimize the 
channel dependent interference parameters in this way. 

4. Derivation of the PDF of the Resulting Interference 
Parameter in the Case of Switching between Four EA-
STBCs 

As explained in the last section, the main idea of our adaptive 
coding is to reduce the resulting interference parameter in order 
to improve the “quasi-orthogonality” of the virtual equivalent 
channel matrix. Therefore, we want to derive the 
corresponding probability density of the resulting random 
interference variable when switching between four EA-STBCs. 

If we have n statistically independent, random variables X 
with the same PDF, fX(x), the density of the variable 
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is given by [13] 
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With (19) and n=4, we get the PDF of the interference 
parameter, Z , as follows: 
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The one-sided PDFs of the three random variables, X, W 
and Z, are shown in Fig. 3. A comparison with Monte-Carlo 
simulation results, also shown in Fig. 3, exhibits excellent 
agreement between the simulation results and the analytical 
formulas given in (19), (22) and (30).  

The mean absolute values of the resulting interference 
parameters W, with E[|W|] = 0.2, and Z, with E[|Z|] = 0.1, are 
substantially smaller compared to E[|X|] = 0.3, when the same 
code is always used. 
 

 

Fig. 3. One-sided PDF of the interference parameters X, W, and Z.
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IV. BER Simulation Results 

In our simulations, we have used a QPSK constellation. A 
flat Rayleigh fading channel remaining constant during the 
transmission of each code block has been assumed. At the 
receiver side, we have used ZF and ML receivers. The BER 
results have been averaged over 2,048 QPSK information 
symbols and 104  realizations of an i.i.d. channel matrix. We 
simulated MIMO systems with four and eight transmit 
antennas and a single receive antenna. 

Figure 4 shows the resulting BER as a function of Eb/N0 for 
the ZF receiver and Fig. 5 shows the results for the ML 
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Fig. 4. BER for 4×1 extended Alamouti scheme with feedback,
applying ZF receiver. 
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receiver in the case of four transmit antennas. Figure 6 presents 
the simulation results for MIMO channels with eight transmit 
antennas and one receiver antenna. The resulting curves are 
compared with ideal two, ideal four and ideal eight path 
diversities (interference parameter equal to zero). 

Obviously, a substantial improvement of the BER can be 
achieved by providing only one or two feedback bits per code 
block enabling the transmitter to switch between two or four 
predefined code matrices. Note that there is only a small 
difference between the ZF receiver and the ML receiver 
performances due the reduced interference parameter X or the 
small amount of “non-orthogonality”, respectively. 

The ideal diversity curves are simulated using (2.1) in [4]: 









= 24

2erfc
2
1BER

σ
h  

for 106 realizations of the i.i.d. channel matrix. 
In [16] and [17], where our simulation have been based on 

correlated MIMO channels and indoor measured MIMO 
channels, we have shown that QSTBCs with our simple 
feedback scheme are robust against channel variations, and that 
they perform very well even on highly correlated channels. 

V. Conclusion 

In this paper, a set of very simple EA-STBCs is presented, 
which can be used in combination with limited channel 
information sent back from the receiver to the transmitter. The 
transmitter switches between several EA-STBCs, governed by 
the partial channel knowledge, in order to approximate an 

interference-free redundant data transmission as far as possible. 
We have shown that this simple transmission scheme with one 
or two feedback bits per code block used to adapt the 
transmission code to the channel improves diversity and the 
bit-error ratio over the whole SNR range compared to the case 
of an open loop system without using feedback. Even with 
only one bit per code block fed back, the resulting system 
achieves a diversity which is near to the maximum. 
 

 

Fig. 5. BER for 4×1 extended Alamouti scheme with feedback, 
applying ML receiver. 
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Fig. 6. BER for an 8×1 extended Alamouti scheme with feedback .
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