• 제목/요약/키워드: Multi Bearing Rotor System

검색결과 21건 처리시간 0.02초

Bearing Load Distribution Studies in a Multi Bearing Rotor System and a Remote Computing Method Based on the Internet

  • Yang, Zhao-Jian;Peng, Ze-Jun;Kim, Seock-Sam
    • Journal of Mechanical Science and Technology
    • /
    • 제18권6호
    • /
    • pp.946-954
    • /
    • 2004
  • A model in the form of a Bearing Load Distribution (BLD) matrix in the Multi Bearing Rotor System (MBRS) is established by a transfer matrix equation with the consideration of a bearing load, elevation and uniform load distribution. The concept of Bearing Load Sensitivity (BLS) is proposed and matrices for load and elevation sensitivity are obtained. In order to share MBRS design resources on the Internet with remote customers, the basic principle of Remote Computing (RC) based on the Internet is introduced ; the RC of the BLD and BLS is achieved by Microsoft Active Server Pages (ASP) technology.

$H_{\infty}$ 제어기에 의한 능동 자기 베어링 시스템의 강인한 제어계 설계 (Robust Control System Design for an AMB by $H_{\infty}$ Controller)

  • 창유;양주호
    • 동력기계공학회지
    • /
    • 제7권3호
    • /
    • pp.48-53
    • /
    • 2003
  • This paper deals with the control of a horizontally placed flexible rotor levitated by electromagnets in a multi-input/multi-output (MIMO) active magnetic bearing(AMB) system. AMB is a kind of novel high performance bearing which can suspend the rotor by magnetic force. Its contact-free manner between the rotor and stator results in it being able to operate under much higher speed than conventional rolling bearings with relatively low power losses, as well as being environmental-friendly technology for AMB system having no wear and no lubrication requirements. In this MIMO AMB system, the rotor is a complex mechanical system, it not only has rigid body characteristics such as translational and slope motion but also bends as a flexible body. Reduced order nominal model is computed by consideration of the first 3 mode shapes of rotor dynamics. Then, the $H_{\infty}$ control strategy is applied to get robust controller. Such robustness of the control system as the ability of disturbance rejection and modeling error is guaranteed by using $H_{\infty}$ control strategy. Simulation results show the validation of the designed control system and the modeling method to the rotor.

  • PDF

다수의 각접촉 볼베어링으로 지지된 5자유도 회전계에서 볼베어링의 Waviness에 의해 발생하는 비선형진동 해석모델 (Nonlinear Vibration Model of Ball Bearing Waviness in a Rigid Rotor Supported by Multi-Row Ball Bearing Considering Five Degrees of Freedom)

  • 정성원;장건희
    • 소음진동
    • /
    • 제11권2호
    • /
    • pp.336-345
    • /
    • 2001
  • This research presents a nonlinear model to analyze the ball bearing nitration due to the waviness in a rigid rotor supported by multi-row ball bearings. The waviness of a ball and each races is modeled by the superposition of sinusoidal function, and the position vectors of inner and outer groove radius center are defined with respect to the mass center of the rotor in order to consider five degrees of freedom of a general rotor-bearing system. The waviness of a ball bearing is introduced to these position vectors to use the Hertzian contact theory in order to calculate the elastic deflection and nonlinear contact force resulting from the waviness while the rotor has translational and angular motion. They can be determined by solving the nonlinear equations of motion with five degrees of freedom by using the Runge-Kutta-Fehlberg algorithm. Numerical results of this research are validated with those of prior researchers. The proposed model can calculate the translational displacement as well as the angular displacement of the rotor supported by the multi-row ball bearings with waviness. It also characterizes the nitration frequencies resulting from the various kinds of waviness in rolling elements, the harmonic frequencies resulting from the nonlinear load-deflection characteristics of ball bearing. and the sideband frequencies resulting from the waviness interaction.

  • PDF

다단 회전체계의 동적 해석을 위한 개선된 모델링 방법 (An exact modeling method for dynamic analysis of multi-stepped rotor systems)

  • 박종혁;홍성욱;이철;김종욱
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.200-205
    • /
    • 1998
  • Although discretization methods such as the transfer matrix method (TMM) and the finite element method (FEM) have played an important role in the design or analysis of rotor-bearing systems, continuous system modeling and analysis are often desirable especially for sensitivity analysis or design. The present paper proposes a comprehensive modeling procedure to obtain exact solution of general rotor-bearing systems. The proposed method considers a Timoshenko beam model and makes use of complex coordinate in the formulation. The proposed method provides exact eigensolutions and frequency response functions (FRFS) of general multi-stepped rotor-bearing systems. The first numerical example compares the proposed method with FEM. The numerical study proves that the proposed method is very efficient and useful for the analysis of rotor-bearing systems.

  • PDF

회전체 베어링계의 불균형 응답 해석을 위한 개선된 부분 구조 합성법 (An Improved Substructure Synthesis Method for Unbalance Response Analysis of Rotor Bearing Systems)

  • 홍성욱;박종혁
    • 소음진동
    • /
    • 제6권1호
    • /
    • pp.71-82
    • /
    • 1996
  • The finite element analysis for rotor bearing systems has been an essential tool for design, identification, and diagnosis of rotating machinery. Among others, the unbalance response analysis is fundamental in the vibration analysis of rotor bearing systems because rotating unbalance is recognized as a common sourve of vibration in rotating machinery. However there still remains a problem in the aspect of computational efficiency for unbalance response analysis of large rotor bearing systems. Gyroscopic terms and local bearing parameters in rotor bearing systems often make matters worse in unbalance response computation due to the complicated dynamic properties such as rotational speed dependency and/or anisotropy. The present paper proposes an efficient method for unbalance responses of multi-span rotor bearing systems. An improved substructure synthesis scheme is introduced which makes it possible to compute unbalance responses of the system by coupling unbalance responses of substructures that are of self adjoint problem with small order matrices. The present paper also suggests a scheme to easily deal with gyroscopic tems and local, coupling or bearing parameters. The proposed method causes no errors even though the computational effort is reduced drastically. The present method is demonstrated through three test examples.

  • PDF

다단 연속 회전체 베어링 계의 일반화된 모드 해석 (A Generalized Modal Analysis for Multi-Stepped, Distributed-Parameter Rotor-Bearing Systems)

  • 박종혁;홍성욱
    • 소음진동
    • /
    • 제9권3호
    • /
    • pp.525-534
    • /
    • 1999
  • The present paper proposes a generalized modal analysis procedure for non-uniform, distributed-parameter rotor-bearing systems. An exact element matrix is derived for a Timoshenko shaft model which contains rotary inertia, shear deformation, gyroscopic effect and internal damping. Complex coordinates system is adopted for the convenience in formulation. A generalized orthogonality condition is provided to make the modal decomposition possible. The generalized modal analysis by using a modal decomposition delivers exact and closed form solutions both for frequency and time responses. Two numerical examples are presented for illustrating the proposed method. The numerical study proves that the proposed method is very efficient and useful for the analysis of distributed-parameter rotor-bearing systems.

  • PDF

자기부상 베어링의 제어에 대한 연구 (A Study on the Stabilization of Magnetically Auspended Bearing System)

  • 이교일;한동철;백승헌;이정훈;장인배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.805-810
    • /
    • 1990
  • Optimal control systems for a radial magnetic bearing are proposed and tested. An electromagnet system model is developed to predict bearing forces as functions of changing coil currents and rotor position. Models of the multi-mass rotor supported by the magnetic bearings are developed and confirmed, and theoretical relationships are expressed in the form of state equation. As a result of computer simulation, the state feedback with optimal procedure is considered to be more effective for magnetic bearing systems than the classical method.

  • PDF

고압 다단펌프 축계 진동 특성 고찰 (Rotordynamic Characteristics of High Pressure Multistage Pump)

  • 송애희;송진대;임우섭;양보석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.592-596
    • /
    • 2012
  • This paper presents numerical analysis result of rotor-bearing system of a multi-stage high pressure pump. Especially resonance possibility, stability and damping factor are estimated for a selected commercial multi-stage high pressure pump. The result shows that it is not easy to avoid resonance of rotor-bearing system against main excitation forces which are residual unbalance force and pressure pulsation. This makes damping effect be more important.

  • PDF

Multi-Objective Optimization of Rotor-Bearing System with dynamic Constraints Using IGA

  • Choi, Byung-Gun;Yang, Bo-Suk;Jun, Yeo-Dong
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.403-410
    • /
    • 1998
  • An immune system has powerful abilities such as memory recognition and learning how to respond to invading antigens, and has been applied to many engineering algorithms in recent year. In this paper, the combined optimization algorithm (Immune-Genetic Algorithm: IGA) is proposed for multi-optimization problems by introduction the capability of the immune system that controls the proliferation of clones to the genetic algorithm. The new combined algorithm is applied to minimize the total weight of the rotor shaft and the transmitted forces at the bearings in order to demonstrate the merit of the combined algorithm. The inner diameter of the shaft and the bearing stiffness are chosen as the design variables. the results show that the combined algorithm can reduce both the weight of the shaft and the transmitted forces at the bearing with dynamic constraints.

  • PDF

자기베어링 지지 로터계를 위한 견실한 중앙집중식 서보제어기 설계 (Robust Centralized Servocontroller Design for a Rotor System Supported by Magnetic Bearings)

  • 김종원
    • 대한기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.1141-1149
    • /
    • 1992
  • 본 연구에서는 Davison이 제안한 견실 제어이론을 응용하여, 자기베어링에 의 해서 지지되는 로터계를 위한 중앙 집중식 서보제어기를 설계하였다. 삼각함수 형태 의 외란과 지령치에 대한 완벽한 영향회피와 추적을 위하여, 일반적 서보보상기(serv- ocompensator)를 MIMO 제어기에 내장하였다. 또한, 상기 제어기의 일부분(subset)으 로서, 중앙집중식 PID 제어기를 제안하였다. 제2장에 자기베어링에 의해 지지되는 강체 로터계의 동적 모델을 요약하였으며, 제3장에서 제어기법의 구축을 설명하고, 두 가지 형태의 제어기에 대한 성능 비교와 견실성의 한계를 보여주는 시뮬레이션 결과를 제 4장에 제시하였다.