• Title/Summary/Keyword: Mucosal immunity

Search Result 80, Processing Time 0.03 seconds

Mucosal Immune Responses of Mice Experimentally Infected with Pygidiopsis summa (Trematoda: Heterophyidae)

  • Chai, Jong-Yil;Park, Young-Jin;Park, Jae-Hwan;Jung, Bong-Kwang;Shin, Eun-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.1
    • /
    • pp.27-33
    • /
    • 2014
  • Mucosal immune responses against Pygidiopsis summa (Trematoda: Heterophyidae) infection were studied in ICR mice. Experimental groups consisted of group 1 (uninfected controls), group 2 (infection with 200 metacercariae), and group 3 (immunosuppression with Depo-Medrol and infection with 200 metacercariae). Worms were recovered in the small intestine at days 1, 3, 5, and 7 post-infection (PI). Intestinal intraepithelial lymphocytes (IEL), mast cells, and goblet cells were counted in intestinal tissue sections stained with Giemsa, astra-blue, and periodic acid-Schiff, respectively. Mucosal IgA levels were measured by ELISA. Expulsion of P. summa from the mouse intestine began to occur from days 3-5 PI which sustained until day 7 PI. The worm expulsion was positively correlated with proliferation of IEL, mast cells, goblet cells, and increase of IgA, although in the case of mast cells significant increase was seen only at day 7 PI. Immunosuppression suppressed all these immune effectors and inhibited worm reduction in the intestine until day 7 PI. The results suggested that various immune effectors which include IEL, goblet cells, mast cells, and IgA play roles in regulating the intestinal mucosal immunity of ICR mice against P. summa infection.

Gut Microbiota in Inflammatory Bowel Disease

  • Shim, Jung Ok
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.16 no.1
    • /
    • pp.17-21
    • /
    • 2013
  • The gut mucosal barrier plays an important role in maintaining a delicate immune homeostasis. The pathogenesis of inflammatory bowel disease (IBD) is considered to involve a defective mucosal immunity along with a genetic predisposition. Recent views have suggested an excessive response to components of the gut microbiota in IBD. A condition of "dysbiosis", with alterations of the gut microbial composition, has been observed in patients with IBD. In this article, the author review recent studies of gut microbiota in IBD, particularly the importance of the gut microbiota in the pathogenesis of pediatric IBD.

Dendritic Cell-Mediated Mechanisms Triggered by LT-IIa-B5, a Mucosal Adjuvant Derived from a Type II Heat-Labile Enterotoxin of Escherichia coli

  • Lee, Chang Hoon;Hajishengallis, George;Connell, Terry D.
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.709-717
    • /
    • 2017
  • Mucosal tissues are the initial site through which most pathogens invade. As such, vaccines and adjuvants that modulate mucosal immune functions have emerged as important agents for disease prevention. Herein, we investigated the immunomodulatory mechanisms of the B subunit of Escherichia coli heat-labile enterotoxin type IIa ($LT-IIa-B_5$), a potent non-toxic mucosal adjuvant. Alternations in gene expression in response to $LT-IIa-B_5$ were identified using a genome-wide transcriptional microarray that focused on dendritic cells (DC), a type of cell that broadly orchestrates adaptive and innate immune responses. We found that $LT-IIa-B_5$ enhanced the homing capacity of DC into the lymph nodes and selectively regulated transcription of pro-inflammatory cytokines, chemokines, and cytokine receptors. These data are consistent with a model in which directional activation and differentiation of immune cells by $LT-IIa-B_5$ serve as a critical mechanism whereby this potent adjuvant amplifies mucosal immunity to co-administered antigens.

Local Immunity of Pediatric Adenoid with Allergic Rhinitis & Sinusitis (알레르기 비염 및 부비동염에 의한 아데노이드의 국소 면역에 대한 고찰)

  • Yeo, Seung-Geun;Park, Dong-Choon;Hong, Chang-Kee;Sim, Ju-Sup;Cha, Chang-Il
    • IMMUNE NETWORK
    • /
    • v.7 no.2
    • /
    • pp.87-94
    • /
    • 2007
  • Background: Chronic rhino-sinusitis and persistent allergic rhinitis is often cited as risk factor for developing adenoid hypertrophy or adenoiditis, but this relationship has not been studied extensively. In this study, we evaluated the mucosal barrier, squamous changes of ciliated epithelium, IgA secretion and BCL-6 expression in adenoids, and adenoid size. Methods: Six children with allergic rhinitis and sinusitis, nine children with only allergic rhinitis, nine children with only sinusitis and six children without any history of allergic rhinitis and sinusitis were enrolled. H-E stain of adenoid for squamous metaplasia, immunohistochemical study of adenoid for IgA and BCL-6, cytokeratin stain for evaluation of mucosal barrier and lateral view X-ray for adenoid size were performed. ANOVA test was used in the analysis and data showing p value of less than 0.05 were considered significant. Results: The number of ciliated cells had tendency to be decreased and squamous metaplasia had tendency to be increased in three experimental groups (p>0.05). Deterioration of mucosal barrier had tendency to be detected in three experimental groups than control group (p>0.05). BCL-6 had tendency to be increased and IgA secretion had tendency to be decreased in three experimental groups (p>0.05). There is no difference in adenoid size between three experimental groups and control group. Conclusion: Despite the expectation that adenoid would be affectecd by allergic rhinitis and rhino-sinusitis, we found no evidence for influence of adenoid immunity.

Heat stress on microbiota composition, barrier integrity, and nutrient transport in gut, production performance, and its amelioration in farm animals

  • Patra, Amlan Kumar;Kar, Indrajit
    • Journal of Animal Science and Technology
    • /
    • v.63 no.2
    • /
    • pp.211-247
    • /
    • 2021
  • Livestock species experience several stresses, particularly weaning, transportation, overproduction, crowding, temperature, and diseases in their life. Heat stress (HS) is one of the most stressors, which is encountered in livestock production systems throughout the world, especially in the tropical regions and is likely to be intensified due to global rise in environmental temperature. The gut has emerged as one of the major target organs affected by HS. The alpha- and beta-diversity of gut microbiota composition are altered due to heat exposure to animals with greater colonization of pathogenic microbiota groups. HS also induces several changes in the gut including damages of microstructures of the mucosal epithelia, increased oxidative insults, reduced immunity, and increased permeability of the gut to toxins and pathogens. Vulnerability of the intestinal barrier integrity leads to invasion of pathogenic microbes and translocation of antigens to the blood circulations, which ultimately may cause systematic inflammations and immune responses. Moreover, digestion of nutrients in the guts may be impaired due to reduced enzymatic activity in the digesta, reduced surface areas for absorption and injury to the mucosal structure and altered expressions of the nutrient transport proteins and genes. The systematic hormonal changes due to HS along with alterations in immune and inflammatory responses often cause reduced feed intake and production performance in livestock and poultry. The altered microbiome likely orchestrates to the hosts for various relevant biological phenomena occurring in the body, but the exact mechanisms how functional communications occur between the microbiota and HS responses are yet to be elucidated. This review aims to discuss the effects of HS on microbiota composition, mucosal structure, oxidant-antioxidant balance mechanism, immunity, and barrier integrity in the gut, and production performance of farm animals along with the dietary ameliorations of HS. Also, this review attempts to explain the mechanisms how these biological responses are affected by HS.

Mucosal Immunoadjuvant Activity of Korean Mistletoe Lectin-C (한국산 겨우살이 렉틴의 경구투여에 의한 항원 특이적 점막면역 증진 효과)

  • Kim, Jin-Chul;Yoon, Taek-Joon;Song, Tae-Jun;Kim, Young-Hoon;An, Hyo-Sun;Kim, Jong-Bae
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.72-76
    • /
    • 2011
  • The adjuvant effects of Korean mistletoe lectin-C (KML-C) were investigated following the oral administration of KML-C with ovalbumin (OVA) as an antigen. Mice were orally immunized with OVA alone or admixed with various doses of KML-C or cholera toxin (CT), and the titer of OVA-specific antibody in the serum and mucosal secretions were determined. OVA+KML-C-treated mice showed high titers of IgA specific to CT in mucosal secretions. The antibody titers in the serum of OVA+KML-C-treated mice were comparable to those in the serum of OVA+CT-treated mice. When mice were immunized with OVA+KML-C or with CT alone and subsequently injected with OVA on the footpads after the primary immunization, they showed a more significant increase in delayed-type hypersensitivity reactions than when they were administered CT alone. These results suggest that KML-C is a potent immunoadjuvant that enhances both humoral and cellular immunity by the mucosal immune system.

Induction of Immunity Against Hepatitis B Virus Surface Antigen by Intranasal DNA Vaccination Using a Cationic Emulsion as a Mucosal Gene Carrier

  • Kim, Tae Woo;Chung, Hesson;Kwon, Ick Chan;Sung, Ha Chin;Kang, Tae Heung;Han, Hee Dong;Jeong, Seo Young
    • Molecules and Cells
    • /
    • v.22 no.2
    • /
    • pp.175-181
    • /
    • 2006
  • Delivery of DNA vaccines to airway mucosa would be an ideal method for mucosal immunization. However, there have been few reports of a suitable gene delivery system. In this study we used a cationic emulsion to immunize mice via the intranasal route with pCMV-S coding for Hepatitis B virus surface antigen (HBsAg). Complexing pCMV-S with a cationic emulsion dramatically enhanced HBsAg expression in both nasal tissue and lung, and was associated with increases in the levels of HBs-specific Abs in serum and mucosal fluids, of cytotoxic T lymphocytes (CTL) in the spleen and cervical and iliac lymph nodes, and of delayed-type hypersensitivity (DTH) against HBsAg. In contrast, very weak humoral and cellular immunities were observed following immunization with naked DNA. In support of these observations, a higher proliferative response of spleenocytes was detected in the group immunized with the emulsion/pCMV-S complex than in the group immunized with naked pCMV-S. These findings may facilitate development of an emulsion-mediated gene vaccination technique for use against intracellular pathogens that invade mucosal surfaces.

Identification of a Peptide Enhancing Mucosal and SystemicImmune Responses against EGFP after Oral Administration in Mice

  • Kim, Sae-Hae;Lee, Kyung-Yeol;Kim, Ju;Park, Seung-Moon;Park, Bong Kyun;Jang, Yong-Suk
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.244-250
    • /
    • 2006
  • Gangliosides are receptors for various peptides and proteins including neuropeptides, ${\beta}$-amyloid proteins, and prions. Recently, the role of gangliosides in mucosal immunization has attracted attention due to the emerging interest in oral vaccination. Ganglioside GM1 exists in abundance on the surface of the M cells of Peyer's patch, a well-known mucosal immunity induction site. In the present study we identified a peptide ligand for GM1 and tested whether it played a role in immune induction. GM1-binding peptides were selected from a phage-displayed dodecapeptide library and one peptide motif, GWKERLSSWNRF, was fused to the C-terminus of enhanced green fluorescent protein (EGFP). The fusion protein, but not EGFP fused with a control peptide, was concentrated around Peyer's patch after incubation in the lumen of the intestine ex vivo. Furthermore, oral feeding of the fusion protein but not control EGFP induced mucosal and systemic immune responses against EGFP resembling Th2-type immune responses.

Immunogenicity and Protective Efficacy of a Dual Subunit Vaccine Against Respiratory Syncytial Virus and Influenza Virus

  • Park, Min-Hee;Chang, Jun
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.261-268
    • /
    • 2012
  • Respiratory syncytial virus (RSV) and influenza virus are the most significant pathogens causing respiratory tract diseases. Composite vaccines are useful in reducing the number of vaccination and confer protection against multiple infectious agents. In this study, we generated fusion of RSV G protein core fragment (amino acid residues 131 to 230) and influenza HA1 globular head domain (amino acid residues 62 to 284) as a dual vaccine candidate. This fusion protein, Gcf-HA1, was bacterially expressed, purified by metal resin affinity chromatography, and refolded in PBS. BALB/c mice were intranasally immunized with Gcf-HA1 in combination with a mucosal adjuvant, cholera toxin (CT). Both serum IgG and mucosal IgA responses specific to Gcf and HA1 were significantly increased in Gcf-HA1/CT-vaccinated mice. To determine the protective efficacy of Gcf-HA1/CT vaccine, immunized mice were challenged with RSV (A2 strain) or influenza virus (A/PR/8/34). Neither detectable viral replication nor pathology was observed in the lungs of the immune mice. These results demonstrate that immunity induced by intranasal Gcf-HA1/CT immunization confers complete protection against both RSV and homologous influenza virus infection, suggesting our Gcf-HA1 vaccine candidate could be further developed as a dual subunit vaccine against RSV and influenza virus.

Mucosal Immunity Related to FOXP3+ Regulatory T Cells, Th17 Cells and Cytokines in Pediatric Inflammatory Bowel Disease

  • Cho, Jinhee;Kim, Sorina;Yang, Da Hee;Lee, Juyeon;Park, Kyeong Won;Go, Junyong;Hyun, Chang-Lim;Jee, Youngheun;Kang, Ki Soo
    • Journal of Korean Medical Science
    • /
    • v.33 no.52
    • /
    • pp.336.1-336.12
    • /
    • 2018
  • Background: We aimed to investigate mucosal immunity related to forkhead box P3 ($FOXP3^+$) regulatory T (Treg) cells, T helper 17 (Th17) cells and cytokines in pediatric inflammatory bowel disease (IBD). Methods: Mucosal tissues from terminal ileum and colon and serum samples were collected from twelve children with IBD and seven control children. Immunohistochemical staining was done using anti-human FOXP3 and anti-$ROR{\gamma}t$ antibodies. Serum levels of cytokines were analyzed using a multiplex assay covering interleukin $(IL)-1{\beta}$, IL-4, IL-6, IL-10, IL-17A/F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, interferon $(IFN)-{\gamma}$, soluble CD40L, and tumor necrosis factor-${\alpha}$. Results: $FOXP3^+$ Treg cells in the lamina propria (LP) of terminal ileum of patients with Crohn's disease were significantly (P < 0.05) higher than those in the healthy controls. $ROR{\gamma}t^+$ T cells of terminal ileum tended to be higher in Crohn's disease than those in the control. In the multiplex assay, serum concentrations (pg/mL) of IL-4 ($9.6{\pm}1.5$ vs. $12.7{\pm}3.0$), IL-21 ($14.9{\pm}1.5$ vs. $26.4{\pm}9.1$), IL-33 ($14.3{\pm}0.9$ vs. $19.1{\pm}5.3$), and $IFN-{\gamma}$ ($15.2{\pm}5.9$ vs. $50.2{\pm}42.4$) were significantly lower in Crohn's disease than those in the control group. However, serum concentration of IL-6 ($119.1{\pm}79.6$ vs. $52.9{\pm}39.1$) was higher in Crohn's disease than that in the control. Serum concentrations of IL-17A ($64.2{\pm}17.2$ vs. $28.3{\pm}10.0$) and IL-22 ($37.5{\pm}8.8$ vs. $27.2{\pm}3.7$) were significantly higher in ulcerative colitis than those in Crohn's disease. Conclusion: Mucosal immunity analysis showed increased $FOXP3^+$ T reg cells in the LP with Crohn's disease while Th17 cell polarizing and signature cytokines were decreased in the serum samples of Crohn's disease but increased in ulcerative colitis.