• Title/Summary/Keyword: Moving boundary problem

Search Result 101, Processing Time 0.025 seconds

Thermal decomposition and ablation analysis of solid rocket nozzle using MSC.Marc (상용해석 코드(MSC-Marc)를 활용한 노즐 내열부품의 숯/삭마 해석 기법)

  • Kim, Yun-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.311-314
    • /
    • 2009
  • A two-dimensional thermal response and ablation simulation code for predicting charring material ablation and shape change on solid rocket nozzle is presented. For closing the problem of thermal analysis, Arrhenius' equation and Zvyagin's ablation model are used. The moving boundary problem and endothermic reaction in thermal decomposition are solved by rezoning and effective specific heat method. For simulation of complicated thermal protection systems, this method is integrated with a three-dimensional finite-element thermal and structure analysis code through continuity of temperature and heat flux.

  • PDF

Impact onto an Ice Floe

  • Khabakhpasheva, Tatyana;Chen, Yang;Korobkin, Alexander;Maki, Kevin
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.146-162
    • /
    • 2018
  • The unsteady problem of a rigid body impact onto a floating plate is studied. Both the plate and the water are at rest before impact. The plate motion is caused by the impact force transmitted to the plate through an elastic layer with viscous damping on the top of the plate. The hydrodynamic force is calculated by using the second-order model of plate impact by Iafrati and Korobkin (2011). The present study is concerned with the deceleration experienced by a rigid body during its collision with a floating object. The problem is studied also by a fully-nonlinear computational-fluid-dynamics method. The elastic layer is treated with a moving body-fitted grid, the impacting body with an immersed boundary method, and a discrete-element method is used for the contact-force model. The presence of the elastic layer between the impacting bod- ies may lead to multiple bouncing of them, if the bodies are relatively light, before their interaction is settled and they continue to penetrate together into the water. The present study is motivated by ship slamming in icy waters, and by the effect of ice conditions on conventional free-fall lifeboats.

Analysis of Stress Concentration Problems Using Moving Least Squares Finite Difference Method(I) : Formulation for Solid Mechanics Problem (이동최소제곱 유한차분법을 이용한 응력집중문제 해석(I) : 고체문제의 정식화)

  • Yoon, Young-Cheol;Kim, Hyo-Jin;Kim, Dong-Jo;Liu, Wing Kam;Belytschko, Ted;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.493-499
    • /
    • 2007
  • The Taylor expansion expresses a differentiable function and its coefficients provide good approximations for the given function and its derivatives. In this study, m-th order Taylor Polynomial is constructed and the coefficients are computed by the Moving Least Squares method. The coefficients are applied to the governing partial differential equation for solid problems including crack problems. The discrete system of difference equations are set up based on the concept of point collocation. The developed method effectively overcomes the shortcomings of the finite difference method which is dependent of the grid structure and has no approximation function, and the Galerkin-based meshfree method which involves time-consuming integration of weak form and differentiation of the shape function and cumbersome treatment of essential boundary.

Analysis of Interface Problem using the MLS Difference Method with Interface Condition Embedment (계면경계조건이 매입된 이동최소제곱 차분법을 이용한 계면경계문제 해석)

  • Yoon, Young-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.4
    • /
    • pp.215-222
    • /
    • 2019
  • The heat conduction problem with discontinuous material coefficients generally consists of the conservative equation, boundary condition, and interface condition, which should be additionally satisfied in the solution procedure. This feature often makes the development of new numerical schemes difficult as it induces a layered singularity in the solution fields; thus, a special approximation is required to capture the singular behavior. In addition to the approximation, the construction of a total system of equations is challenging. In this study, a wedge function is devised for enriching the approximation, and the interface condition itself is embedded in the moving least squares(MLS) derivative approximation to consistently satisfy the interface condition. The heat conduction problem is then discretized in a strong form using the developed derivative approximation, which is named as the interface immersed MLS difference method. This method is able to efficiently provide a numerical solution for such interface problems avoiding both numerical quadrature as well as extra difference equations related to the interface condition enforcement. Numerical experiments proved that the developed numerical method was highly accurate and computationally efficient at solving the heat conduction problem with interfacial jump as well as the problem with a geometrically induced interfacial singularity.

Moving Object Tracking Scheme based on Polynomial Regression Prediction in Sparse Sensor Networks (저밀도 센서 네트워크 환경에서 다항 회귀 예측 기반 이동 객체 추적 기법)

  • Hwang, Dong-Gyo;Park, Hyuk;Park, Jun-Ho;Seong, Dong-Ook;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.3
    • /
    • pp.44-54
    • /
    • 2012
  • In wireless sensor networks, a moving object tracking scheme is one of core technologies for real applications such as environment monitering and enemy moving tracking in military areas. However, no works have been carried out on processing the failure of object tracking in sparse sensor networks with holes. Therefore, the energy consumption in the existing schemes significantly increases due to plenty of failures of moving object tracking. To overcome this problem, we propose a novel moving object tracking scheme based on polynomial regression prediction in sparse sensor networks. The proposed scheme activates the minimum sensor nodes by predicting the trajectory of an object based on polynomial regression analysis. Moreover, in the case of the failure of moving object tracking, it just activates only the boundary nodes of a hole for failure recovery. By doing so, the proposed scheme reduces the energy consumption and ensures the high accuracy for object tracking in the sensor network with holes. To show the superiority of our proposed scheme, we compare it with the existing scheme. Our experimental results show that our proposed scheme reduces about 47% energy consumption for object tracking over the existing scheme and achieves about 91% accuracy of object tracking even in sensor networks with holes.

A New VOF-based Numerical Scheme for the Simulation of Fluid Flow with Free Surface(II)-New Free Surface Tracking Algorithm and Its Verification- (자유 표면이 존재하는 유체 유동 해석을 위한 VOF 방법 기반의 새로운 수치 기법(II)-캐비터 충전 문제와 슬로싱 문제에의 응용-)

  • Kim, Min-Su;Park, Jong-Seon;Lee, U-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1570-1579
    • /
    • 2000
  • Finite element analysis of fluid flow with moving free surface has been carried out in two and tree dimensions. The new VOF-based numerical algorithm that has been proposed by the present authors was applied to several 2-D and 3-D free surface flow problems. The proposed free surface tracking scheme is based on two numerical tools that have been newly introduced by the present authots; the orientation vector to represent the free surface orientation in each cell and the baby-cell to determine the fluid volume flux at each cell boundary. The proposed numerical algorithm has been applied to 2-D and 3-D cavity filling and sloshing problems, which demonstrated versatility and effectiveness of the new free surface tracking scheme as well as the overall solution procedure. The proposed numerical algorithm resolved successfully the interacting free surface with each other. The simulated results demonstrated the applicability of proposed numerical algorithm to the practical problems of large free surface motion. Also, it has been demonstrated that the proposed free surface tracking scheme can be easily implemented in any irregular non-uniform grid systems and can be extended to the 3-D free surface flow problem without additional efforts.

Effect on Vessel Motion Caused by Mitigation of Sloshing Impact Loads using Floaters (플로터를 이용한 슬로싱 충격하중 저감효과가 선체운동에 미치는 영향)

  • Nam, Jung-Woo;Kim, Kyung-Sung;Hwang, Sung-Chul;Heo, Jae-Kyung;Park, Jong-Chun;Kim, Moo-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.50-56
    • /
    • 2012
  • When a liquid cargo tank is partially filled with fluid, internal impact loads can be occurred from the vessel's motions. In this study, liquid sloshing problems with a thin top layer of particles with a lighter density than water and the coupling effects of the liquid-sloshing/vessel-motion were investigated in order to reduce the sloshing-induced impact loads. The PNU-MPS (Pusan-National-University-modified Moving Particle Simulation) method for solving the liquid motion inside a tank and the CHARM3D BEM (Boundary Element Method) based time-domain ship motion analysis program for vessel-motion simulation were coupled. From the simulation results, we could see that the floaters seemed to be quite effective at reducing the sloshing impact loads in the case of tank-only sloshing problems, but not as much for the coupling problem with vessel motion.

Uncertainty for Privacy and 2-Dimensional Range Query Distortion

  • Sioutas, Spyros;Magkos, Emmanouil;Karydis, Ioannis;Verykios, Vassilios S.
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.3
    • /
    • pp.210-222
    • /
    • 2011
  • In this work, we study the problem of privacy-preservation data publishing in moving objects databases. In particular, the trajectory of a mobile user in a plane is no longer a polyline in a two-dimensional space, instead it is a two-dimensional surface of fixed width $2A_{min}$, where $A_{min}$ defines the semi-diameter of the minimum spatial circular extent that must replace the real location of the mobile user on the XY-plane, in the anonymized (kNN) request. The desired anonymity is not achieved and the entire system becomes vulnerable to attackers, since a malicious attacker can observe that during the time, many of the neighbors' ids change, except for a small number of users. Thus, we reinforce the privacy model by clustering the mobile users according to their motion patterns in (u, ${\theta}$) plane, where u and ${\theta}$ define the velocity measure and the motion direction (angle) respectively. In this case, the anonymized (kNN) request looks up neighbors, who belong to the same cluster with the mobile requester in (u, ${\theta}$) space: Thus, we know that the trajectory of the k-anonymous mobile user is within this surface, but we do not know exactly where. We transform the surface's boundary poly-lines to dual points and we focus on the information distortion introduced by this space translation. We develop a set of efficient spatiotemporal access methods and we experimentally measure the impact of information distortion by comparing the performance results of the same spatiotemporal range queries executed on the original database and on the anonymized one.

Thermal Decomposition and Ablation Analysis of Solid Rocket Propulsion (삭마 및 열분해 반응을 고려한 고체 추진기관의 열해석)

  • Kim, Yun-Chul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.32-44
    • /
    • 2010
  • A two-dimensional thermal response and ablation analysis code for predicting charring material ablation and shape change on solid rocket nozzle is presented. The thermogravimetric analysis (TGA) techniques have been used to characterize the thermal decomposition constants for Arrhenius parameters. Two heterogeneous reactions involving carbon and the oxidizing species of $H_2O$ and $CO_2$ are considered and determined by Zvyagin's ablation model and kinetic constants. The moving boundary problem and mesh moving are solved by remeshing-rezoning method in MSC-Marc-ATAS program. The difference between the calculated and experimental value of char and ablation thickness is up to 20%. For the performance prediction of thermal protection systems, this method will be integrated with a three-dimensional finite-element thermal and structure analysis code through the real time sensing of in-depth temperature and heat flux.

Numerical Model for Thermal Hydraulic Analysis in Cable-in-Conduit-Conductors

  • Wang, Qiuliang;Kim, Kee-Man;Yoon, Cheon-Seog
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.985-996
    • /
    • 2000
  • The issue of quench is related to safety operation of large-scale superconducting magnet system fabricated by cable-in-conduit conductor. A numerical method is presented to simulate the thermal hydraulic quench characteristics in the superconducting Tokamak magnet system, One-dimensional fluid dynamic equations for supercritical helium and the equation of heat conduction for the conduit are used to describe the thermal hydraulic characteristics in the cable-in-conduit conductor. The high heat transfer approximation between supercritical helium and superconducting strands is taken into account due to strong heating induced flow of supercritical helium. The fully implicit time integration of upwind scheme for finite volume method is utilized to discretize the equations on the staggered mesh. The scheme of a new adaptive mesh is proposed for the moving boundary problem and the time term is discretized by the-implicit scheme. It remarkably reduces the CPU time by local linearization of coefficient and the compressible storage of the large sparse matrix of discretized equations. The discretized equations are solved by the IMSL. The numerical implement is discussed in detail. The validation of this method is demonstrated by comparison of the numerical results with those of the SARUMAN and the QUENCHER and experimental measurements.

  • PDF