• Title/Summary/Keyword: Moving boundary problem

Search Result 101, Processing Time 0.026 seconds

Longitudinal Vibration Analysis of an Axially Moving Material by Using the Assumed Modes Method (가정모드법을 이용한 축방향으로 이동하는 연속체의 종진동 해석)

  • 정진태;허진욱;한창수
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.138-143
    • /
    • 2000
  • Longitudinal vibration of an axially moving material is investigated by using the assumed modes method. To circumvent a difficulty in choosing the comparison functions which satisfy the boundary conditions, the assumed modes method is adopted by which equations of motion are discretized. Based on the discretized equations, the complex eigenvalue problem is solved and then the effects of the translating velocity on the natural frequencies and modes are analyzed.

  • PDF

Time-varying sliding surface design using eigenvalue locus for high-order variable structure control systems (고차 가변구조 제어 시스템에서의 고유치 궤적을 이용한 시변 스위칭 평면 설계)

  • 이영성;김가규;최봉열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.253-256
    • /
    • 1996
  • In this paper, A new time-varying sliding surface design using eigenvalue locus is proposed to achieve fast and robust in a class of high-order uncertain dynamic system. A moving sliding surface(MSS) was proposed earlier for the second-order variable structure control systems(VSCS). This methodology led to fast and robust control responses of the second-order VSCS. However, the moving algorithm of the MSS was too complicated to be employed the high-order VSCS. To resolve this problem, we propose a new moving algorithm that switching surface moves such that the eigenvalues of equivalent system in the sliding mode have a predetermined locus. Using the proposed surface fast and robust behaviors are accomplished. The problem of chattering can be eliminated by using a boundary layer of switching surface. The efficiency of proposed algorithm is illustrated by an application to four-order workbench.

  • PDF

Analysis of Compressible Flow Fields in a High Voltage Gas Circuit Breaker (초고압 가스차단기 내부의 압축성 유동장 해석)

  • Lee, J.C.;Oh, I.S.;Kim, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.305-310
    • /
    • 2001
  • This paper presents the computational method for analyzing the compressible flow fields in a high voltage gas circuit breaker. There are many difficult problems in analyzing the gas flow in GCB due to complex geometry, moving boundary, shock wave and so on. In particular, the distortion problem of the grid due to the movement of moving parts can be worked out by the fixed grid technique. Numerical simulations are based on a fully implicit finite volume method of the compressible Reynolds-averaged Navier-Stokes equations to obtain the pressure, density, and velocity through the entire interruption process. The presented method is applied to the real circuit breaker model and the pressure in front of the piston is good agreement with the experimental one.

  • PDF

Numerical flow computation around aeroelastic 3D square cylinder using inflow turbulence

  • Kataoka, Hiroto;Mizuno, Minoru
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.379-392
    • /
    • 2002
  • Numerical flow computations around an aeroelastic 3D square cylinder immersed in the turbulent boundary layer are shown. Present computational code can be characterized by three numerical aspects which are 1) the method of artificial compressibility is adopted for the incompressible flow computations, 2) the domain decomposition technique is used to get better grid point distributions, and 3) to achieve the conservation law both in time and space when the flow is computed a with moving and transformed grid, the time derivatives of metrics are evaluated using the time-and-space volume. To provide time-dependant inflow boundary conditions satisfying prescribed time-averaged velocity profiles, a convenient way for generating inflow turbulence is proposed. The square cylinder is modeled as a 4-lumped-mass system and it vibrates with two-degree of freedom of heaving motion. Those blocks which surround the cylinder are deformed according to the cylinder's motion. Vigorous oscillations occur as the vortex shedding frequency approaches cylinder's natural frequencies.

Effect of aerodynamic drag force on liquid metal convection in GTA welding (GTA 용접시 발생하는 용융금속의 유동에 미치는 공기역학적 향력의 영향)

  • 나석주;김성도
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.575-583
    • /
    • 1991
  • The weld pool convection problem that occurs during the stationary GTA welding has been studied, considering the four driving forces for weld pool convection, i.e., the electromagnetic force, the buoyancy force, the aerodynamic drag force, and the surface tension force at the weld pool surface. In the numerical simulation, the difficulties associated with the irregular moving liquid-solid interface have been successfully overcome by adopting a Boundary-Fitted Coordinate system. In the experiments to show the validity of the numerical analysis, a deep periphery and shallow centerpentrated weld pool shape was observed from the etched specimen. It could be revealed that this type of weld pool shape could be simulated, only when some of aerodynamic drag force distributions are considered. Although slight disagreement arose, the calculated and the observed weld pool shapes were in a reasonable agreement.

Modeling of Velocity Term in 3D Moving Conductor Problems by the Indirect BIEM (간접경계적분법에 의한 3차원 운동도체 문제에서의 속도항 모델링)

  • Kim, Dong-Hun;Park, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.113-115
    • /
    • 1998
  • This paper presents the indirect boundary integral equation method(BIEM) to analyze 3D moving conductor problem. Instead of an artificial upwind algothm, the proposed method uses a fundamental Green's function which is a particular solution of diffusion equation. Therefore, this method yields a stable and accurate solution regardless of the Peclet number. The indirect BIEM is compared with 3D upwind FEM for a numerical model which has analytic solutions.

  • PDF

NUMERICAL STUDY ON TWO-DIMENSIONAL INCOMPRESSIBLE VISCOUS FLOW BASED ON GRIDLESS METHOD (2차원 비압축성 점성유동에 관한 무격자법 기반의 수치해석)

  • Jeong, S.M.;Park, J.C.;Heo, J.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.239-244
    • /
    • 2009
  • The gridless (or meshfree) methods, such as MPS, SPH, FPM an so forth, are feasible and robust for the problems with moving boundary and/or complicated boundary shapes, because these methods do not need to generate a grid system. In this study, a gridless solver, which is based on the combination of moving least square interpolations on a cloud of points with point collocation for evaluating the derivatives of governing equations, is presented for two-dimensional unsteady incompressible Navier-Stokes problem in the low Reynolds number. A MAC-type algorithm was adopted and the Poission equation for the pressure was solved by successively in the moving least square sense. Some weighing functions were tested in order to investigate the up-winding effect for the convection term. Some typical problems were solved by the presented solver for the validation and the results obtained were compared with analytic solutions and the numerical results by conventional CFD methods, such as FVM.

  • PDF

Numerical Simulation for Pressing Process of Hot glass (고온 유리의 프레스 성형 공정 시뮬레이션)

  • Ji Suk Man;Choi Joo Ho;Kim Jun Bum;Ha Duk Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.205-213
    • /
    • 2005
  • This paper addresses a method for numerical simulation in the pressing process of hot glass. Updated Lagrangian finite element formulations are employed for the flow and energy equations to accommodate moving meshes. The model is assumed axi-symmetric and creep flow is assumed due to the high viscosity. Commercial software ANSYS is used to solve the coupled flow and energy equations. Moving contact points as well as free surface during the pressing are effectively calculated and updated by utilizing API functions of CAD software Unigraphics. The mesh distortion problem near the wall is overcome by automatic remeshing, and the temperatures of the new mesh are conveniently interpolated by using a unique function of ANSYS. The developed model is applied to the pressing process of TV glasses. In conclusion, the presented method shows that the pressing process accompanying moving boundary can be simulated by effectively combining general purpose software without resorting to special dedicated codes.

WEAK SOLUTION OF AN ARCH EQUATION ON A MOVING BOUNDARY

  • DAEWOOK KIM;SUDEOK SHON;JUNHONG HA
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.1
    • /
    • pp.49-64
    • /
    • 2024
  • When setting up a structure with an embedded shallow arch, there is a phenomenon where the end of the arch moves. To study the so-called moving domain problem, one try to transform a considered noncylindrical domain into the cylindrical domain using the transform operator, as well as utilizing the method of penalty and other approaches. However, challenges arise when calculating time derivatives of solutions in a domain depending on time, or when extending the initial conditions from the non-cylindrical domain to the cylindrical domain. In this paper, we employ the transform operator to prove the existence and uniqueness of weak solutions of the shallow arch equation on the moving domain as clarifying the time derivatives of solutions in the moving domain.

MODEL FOR THE CONTAMINATION OF CONFINED AQUIFERS BY POLLUTANTS

  • Bestman, A.R.;Odigi, M.I.
    • The Pure and Applied Mathematics
    • /
    • v.6 no.2
    • /
    • pp.113-120
    • /
    • 1999
  • This paper studies the problem of an infinite confined aquifer which at time t < 0 is assumed motionless. At time t = 0 crude oil seeps into the aquifer, thereby contaminating the valuable drinking water. Since the crude oil and water are im-miscible, the problem is posed as a one-dimensional two-phase unsteady moving boundary problem. A similarity solution is developed in which the moving front parameter is obtained by Newton-Ralphson iteration. A numerical scheme, involving the front tracking method, is devised employing the fourth order Runge-Kutta method. Comparison of the exact and numerical schemes shows an error of only 3%. Thus the developed numerical scheme is quite accurate in tackling more realistic problems where exact solutions are not possible.

  • PDF