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WEAK SOLUTION OF AN ARCH EQUATION

ON A MOVING BOUNDARY†

DAEWOOK KIM, SUDEOK SHON, JUNHONG HA∗

Abstract. When setting up a structure with an embedded shallow arch,
there is a phenomenon where the end of the arch moves. To study the

so-called moving domain problem, one try to transform a considered non-

cylindrical domain into the cylindrical domain using the transform opera-
tor, as well as utilizing the method of penalty and other approaches.

However, challenges arise when calculating time derivatives of solutions

in a domain depending on time, or when extending the initial conditions
from the non-cylindrical domain to the cylindrical domain.

In this paper, we employ the transform operator to prove the existence

and uniqueness of weak solutions of the shallow arch equation on the mov-
ing domain as clarifying the time derivatives of solutions in the moving

domain.
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1. Introduction

Let a shallow arch or an extensible beam be positioned over the interval [0, L].
Suppose that w0(ξ), ξ ∈ [0, L] is a shape when no load (q = 0) is applied to it.
The deflection w(ξ, t) of the shallow arch or extensible beam at ξ ∈ (0, L) and
τ > 0 can expressed by

ρA
∂2w

∂τ2
−

(
a+ b

∫ L

0

∣∣∣∣∂w∂ξ
∣∣∣∣2 dξ

)
∂2w

∂ξ2
+ EI

∂4w

∂ξ4
+ cd

∂w

∂τ
= g(ξ, τ) (1.1)
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with

a = −EA

2L

∫ L

0

∣∣∣∣∂w0

∂ξ

∣∣∣∣2 dξ, b =
EA

2L
and g(ξ, t) = EI

∂4w0

∂ξ4
+ q(ξ, τ),

where ρ is the mass density, A is the cross-section area of the arch, E is the
Young’s modulus, I is the moment of inertial of the cross-section, and cd is the
air damping coefficient, see [11, 12].

This equation (1.1) has attracted a lot of interest in both engineering and
mathematics, and many papers examining its properties have been published.
Extensive research in the field of engineering has been dedicated to investigating
diverse phenomena, including chaotic motion, global dynamic behavior, reso-
nance, and buckling under various loads. Among the vast array of engineering
articles, we refer to see the review work [18] and references there.

Mathematical study has been started in [1, 2], and abstract study on infinite
dimensional spaces was summarized in [19], and the author has established the
fundamental study like the existence, uniqueness, regularity and stability of
solutions for equation (1.1).

When setting up a structure with an embedded shallow arch, there is a phe-
nomenon where the end of the arch moves. Studying issues related to the instal-
lation and removal of this structure with the moving end of the arch is crucial
for enhancing efficiency and ensuring safety. It is clear that the properties of
such the problem differ significantly from the problem with a fixed boundary.

In the studies conducted by [5] and [7], the primary focus was on investigat-
ing the existence, uniqueness and stability of solutions for (1.1) on a moving
domain. They studied the problems utilizing a methodology that converts the
non-cylindrical domain into a cylindrical domain. However, a notable issue arises
when calculating the time derivatives of solutions within the moving domain de-
pending on time. But, their studies didn’t address of this ambiguity.

To avoid this ambiguity, two alternative approaches were proposed for dif-
ferential equations other than (1.1). One approach involved the utilization of
the penalty method initiated by J. L. Lions. The method were discussed in [4]
and [20]. The other approach involved employing the Lie derivative through
push-forwards and pull-backs of functions, which was suggested in [17]. Another
general approach for utilizing the sub-differential operator on the moving domain
was explored in [3] and [14]. This method, known as the penalty method for a
single value operator as discussed in [6], [8], and [13]. Since the differential high-
est operator in theirs studies is ∆, there was no difficulty in extending the initial
conditions from the non-cylindrical domain to the cylindrical domain. However,
since (1.1) is containing ∆2, the extension of the initial conditions cannot be
carried out in a manner similar to the process involving ∆.

In this paper, we prove the existence and uniqueness of weak solutions by using
the transform operator as the first research step. To utilize this method, certain
conditions must be imposed to facilitate the calculation of time derivatives within
the moving domain depending on time. It is enough that the velocity of the
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moving boundary is bounded, and we want to see (2.21) and description below
it.

This paper establishes the uniqueness and existence of weak solutions for the
initial boundary problem described on the moving domain. In Section 2, we
introduce a model equation for the shallow arch defined on the time-dependent
moving domain and derive its dimensionless equation on the cylindrical problem
by using the transform operator. In Section 3, we gather relevant materials
and their associated proofs and prove the existence and uniqueness of weak
solutions in proper Hilbert spaces. In Section 4, we establish the existence and
uniqueness of weak solutions for the proposed equations on both the cylindrical
and non-cylindrical domains. Furthermore, we provide a numerical example that
demonstrates the validity of the model equation.

2. Dimensionless model

Let us derive a dimensionless model equation by carefully considering the
physical parameters. Let Ω̃τ = (α̃(τ), β̃(τ)) ⊂ Ω̃ = (0, L) be a domain dependent

of the time variable τ ∈ (0, T̃ ). Put θ̃(τ) = β̃(τ)− α̃(τ).

Q̃ =
⋃

0<τ<T̃

Ω̃τ × {τ} and Q = Ω× (0, T̃ ).

By considering (1.1) we introduce the system in the moving domain Q̃ governed
by

ρA
∂2w̃

∂τ2
−

(
ã(τ) + b̃(τ)

∫ β̃(τ)

α̃(τ)

∣∣∣∣∂w̃∂ξ̃
∣∣∣∣2 dξ̃

)
∂2w̃

∂ξ̃2
+EI

∂4w̃

∂ξ̃4
+cd

∂w̃

∂τ
= g̃(ξ̃, τ) (2.1)

with

ã(τ) = − EA

2θ̃(τ)

∫ β̃(τ)

α̃(τ)

∣∣∣∣∂w̃0

∂ξ̃

∣∣∣∣2 dξ̃, b̃(τ) =
EA

2θ̃(τ)

and

g̃(ξ̃, τ) = EI
∂4w̃0

∂ξ̃4
+ q̃(ξ̃, τ)

with the initial conditions

w̃(ξ̃, 0) = w̃0,
∂w̃

∂τ
(ξ̃, 0) = w̃1 in (α̃(0), β̃(0)), (2.2)

with the hinged boundary condition

w̃(α̃(τ), τ) = w̃(β̃(t), τ) = w̃ξ(α̃(τ), τ) = w̃ξ(β̃(τ), τ) = 0 for all τ ≥ 0, (2.3)

or with the clamped boundary condition

w̃(α̃(τ), τ) = w̃(β̃(τ), τ) = w̃ξ̃ξ̃(α̃(τ), τ) = w̃ξ̃ξ̃(β̃(τ), τ) = 0 for all τ ≥ 0. (2.4)
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To transform the equations (2.1)-(2.4) in Q̃ into an equations in Q, let’s define

the transformation operator T : Q̃ → Q by

T (ξ̃, τ) = (ξ, τ) =

(
ξ̃ − α̃(t)

θ̃(t)
L, τ

)
.

Assume that the functions α̃(τ) and β̃(τ) satisfy

α̃, β̃ ∈ C2[0, T̃ ]. (2.5)

Put w(ξ, τ) = (w̃ ◦ T −1)(ξ, τ) = w̃(ξ̃, τ). All derivatives ofw̃ with respective

to ξ̃ and τ are formally calculated by

w̃τ = ξ′wξ + wτ , (2.6)

w̃ττ = wξξξ
′2 + wξξ

′′ + 2wτξξ
′ + wττ , (2.7)

∂k
ξ̃
w̃ =

Lk

θ̃k
∂k
ξw for k = 1, 2, · · · , (2.8)

where

ξ′ = −1

θ̃
(ξθ̃′ + α̃′L), ξ′′ =

1

θ̃2

{
2θ̃′(ξθ̃′ + α̃′L)− θ̃(ξθ̃′′ + α̃′′L)

}
.

Putting all derivatives (2.6)-(2.8) into (2.1) we have the equation for w(ξ, τ) on
Q satisfying

ρA(wξξξ
′2 + wξξ

′′ + 2wτξξ
′ + wττ ) (2.9)

+
L2

θ̃(τ)2

(
a(τ) +

Lb(τ)

θ̃(τ)

∫ L

0

∣∣∣∣∂w∂ξ
∣∣∣∣2 dξ

)
∂2w

∂ξ2

+
EIL4

θ̃(τ)4
∂4w

∂ξ4
+ cd(wξξ

′ + wτ ) = g(x, τ)

with

a(τ) = − EAL

2θ̃(τ)2

∫ L

0

∣∣∣∣∂w0

∂ξ

∣∣∣∣2 dξ, b(τ) =
EA

2θ̃(τ)

and

g(ξ, τ) =
EIL4

θ̃(τ)4
∂4w0

∂ξ4
+ q(ξ, τ), q(ξ, τ) = q̃(θ̃ξ + α̃, τ).

Change of variables as follows:

x =
ξ

L
, y =

w

r
, p =

q

EIr
, ω0 =

√
EI

ρA
, r =

√
I

A
, t = ω0τ, γ =

cd
ρAω0

.

Define α(t), β(t) and θ(t) on [0, T ] by

α(t) = α̃(τ) = α̃

(
t

ω0

)
, β(t) = β̃(τ), θ(t) = θ̃(τ). (2.10)
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Using these the variables and the boundary functions we have

wτ = rω0yt, wττ = rω2
0ytt, wτξ =

rω0

L
ytx, ∂

k
ξw =

r

Lk
∂k
xy, (2.11)

α̃′(τ) = ω0α
′(t), β̃′(τ) = ω0β

′(t), θ̃′(τ) = ω0θ
′(t) (2.12)

and

ξ′ = −Lω0

θ
(xθ′ + α′), ξ′′ =

Lω2
0

θ2
{2θ′(xθ′ + α′)− θ(xθ′′ + α′′)} . (2.13)

From (2.10)-(2.13), the first term and last term in (2) are written by

ρA(wξξξ
′2 + wξξ

′′ + 2wτξξ
′ + wττ ) (2.14)

= rω2
0ρA

[
1

θ2
(xθ′ + α′)2yxx +

1

θ2
{2θ′(xθ′ + α′)− θ(xθ′′ + α′′)} yx

−2

θ
(xθ′ + α′)ytx + ytt

]
and

cd(wξξ
′ + wτ ) = rω0cd

[
−1

θ
(xθ′ + α′)yx + yt

]
. (2.15)

Finally, putting (2.10)-(2.15) into we get the dimensionless equation

ytt + a1(t)yxxxx −
(
a2(t) + a3(t)

∫
Ω

|yx|2dx
)
yxx + a4(x, t)yx (2.16)

+a5(x, t)yxx + a6(x, t)yxt + γyt = f(x, t),

where

• a1(t) =
1

θ4
, a2(t) = − 1

2θ4

∫ 1

0

∣∣∣∣∂y0∂x

∣∣∣∣2 dx, a3(t) =
1

2θ4
,

• a4(x, t) =
1

θ2
{2θ′(xθ′ + α′)− θ(xθ′′ + α′′)} − γ

θ
(xθ′ + α′)

• a5(x, t) =
(θ′x+ α′)2

θ2
, a6(x, t) = −2(xθ′ + α′)

θ
,

• f(x, t) = 1
θ(t)4

∂4y0

∂x4 + p(x, t), p(x, t) = 1
rω2

0ρA
q(Lx, ω−1

0 t).

From now on, let Ωt = (α(t), β(t)) ⊂ Ω = (0, 1) be a domain dependent of

the time variable t ∈ (0, T ), T = ω0T̃ , and

Q̂ =
⋃

0<t<T

Ωt × {t} and Q = Ω× (0, T ).

We consider the initial and boundary valued problem as follows:

ytt + a1(t)yxxxx −
(
a2(t) + a3(t)

∫
Ω

|yx|2dx
)
yxx + a4(x, t)yx (2.17)

+a5(x, t)yxx + a6(x, t)yxt + γyt = f(x, t) in Q

with the initial conditions

y(x, 0) = y0(x), yt(x, 0) = y1(x) in Ω0, (2.18)
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with the hinged boundary condition

y(0, t) = y(1, t) = yx(0, t) = yx(1, t) = 0 for all t ≥ 0, (2.19)

or with the clamped boundary condition

y(0, t) = y(1, t) = yxx(0, t) = yxx(1, t) = 0 for all t ≥ 0, (2.20)

In (2.18), y0(x) = w0(ξ) and y1(x) = w1(ξ) for ξ ∈ Ω0 = (α(0), β(0)).
We need specific conditions necessary to ensure the validity of all derivatives

(2.6)-(2.8). Condition Ω̃τ ⊂ Ω̃τ+h, h > 0 would be sufficient, but it may not

always hold. We assume that for any ξ̃ ∈ Ω̃τ there is ĥ > 0 such that

ξ̃ ∈ Ω̃τ+h for 0 < h < ĥ. (2.21)

Assumption (2.21) is obtainable because |α̃′(τ)| and |β̃′(τ)| are bounded from

(2.5). Let ξ̃ ∈ Ω̃τ and consider α̃(τ) only. Since Ω̃τ is open, d = ξ̃ − α̃(τ) > 0.
Integrating α̃′(t) over the interval [τ, τ + h] yields

|α̃(τ + h)− α̃(τ)| ≤ h max
τ∈[0,T̃ ]

|α̃′(τ)|.

We can take ĥ to give the inequality

|α̃(τ + h)− α̃(τ)| ≤ d

2
for 0 < h < ĥ.

This inequality means ξ̃ ∈ Ω̃τ+h for sufficiently small h > 0.
Assumption (2.5) implies that there is a constant c independent of x and t

satisfying

|ai(t)|, |a′i(t)|, |ai(x, t)|, |a′i(x, t)| ≤ c for all (x, t) ∈ [0, 1]× [0, T ]. (2.22)

3. Problem setup

Let us introduce Hilbert spaces for solving (2.17)-(2.18) with (2.19) and (2.17)-
(2.18) with (2.20). Let the Hilbert space H = L2(Ω) have the norm |u|, and
the inner product (u, v) =

∫
Ω
u(x)v(x)dx. For the hinged boundary conditions

we choose V = H1
0 (Ω) ∩ H2(Ω), and for the clamped boundary conditions let

V = H2
0 (Ω). In both cases V is a Hilbert space with the inner product ((u, v)) =

(uxx, vxx), and the norm ∥u∥ = |uxx|, u, v ∈ V . This norm is equivalent to the
standard norm in H2(Ω), see [9]. It implies that ((u, v)) = 0 deduces (uxvx) = 0.

Since C∞
0 (Ω) is dense in H, it follows that V is densely embedded in H. In

fact, the embedding is compact and continuous. Identifying H with its dual
gives a Gelfand five fold V ⊂ H ⊂ V ′, where the duality pairing ⟨·, ·⟩ between
V and its dual V ′ is consistent with the inner product in H.

First of all, we introduce the operator ∆2
cu = ∆2u, u ∈ D(∆c) = H4(Ω) ∩

H2
0 (Ω) for the clamped boundary condition, and the operator ∆2

hu = ∆2u, u ∈
D(∆h) = {u ∈ H4(Ω) ∩ H1

0 (Ω) : ∆u = 0 on Γ} for the hinged boundary



Weak solution of an arch equation on a moving boundary 55

condition. Then ∆2
c and ∆2

h generate coercive bilinear forms on V = H2
0 (Ω) and

V = H1
0 (Ω) ∩H2(Ω), respectively. Hence, A = ∆2

c = ∆2
h defined by

⟨Au, v⟩ =
∫
Ω

∆u ∆v dx, u, v ∈ V (3.1)

is a self-adjoint, strictly positive operator on V = H2
0 (Ω) or V = H1

0 (Ω)∩H2(Ω).
It is clear that A is a linear continuous operator from V to V ′, which denotes
A ∈ L(V, V ′).

Since operator A is a self-adjoint, strictly positive operator in V and (un-
bounded) in H, see [19, Section 2.2.1]. Its inverse A−1 is also self-adjoint in
H. Since the injection of V into H is compact, A−1 is a compact operator
in H. Accordingly, there exists a complete orthonormal sequence of eigen-
functions {φk}∞k=1 ⊂ D(A). The corresponding eigenvalues µk, k ∈ N satisfy
Aφk = µkφk, k ∈ N.

Using the interpolation theory ([19, section 2.2.1]), one can define various
fractional powers of A. In particular, one can show that A1/2 = −B ∈ L(V,H).
This positive operator has the same eigenfunctions φk as A, and its eigenvalues
λk satisfy λ2

k = µk, k ∈ N.
To set up the weak formulation of the problem we introduce operators Ai, i =

4, 5, 6 and G, corresponding to the terms of equation (2.17).
Through this paper, constant c denotes various constants in all estimates, and

it is independent of t.

Lemma 3.1 ([10]). (i) Define operator Ai(t), i = 4, 6 by

(Ai(t)u, v) =

∫
Ω

ai(x, t)ux v dx, u, v ∈ V.

Then Ai(t) ∈ L(V,H) and A6(t) ∈ L(H,V ′).
(ii) Define operator A5(t) by

(A5(t)u, v) =

∫
Ω

a5(x, t)uxx v dx, u, v ∈ V.

Then A5(t) ∈ L(V,H).
(iii) Define operator G by

Gu = |∇u|2Bu, u ∈ V.

Then G is a nonlinear continuous operator from V into H, which is
Lipschitz continuous on bounded subsets of V .

|Gu−Gv| ≤ c
(
∥u∥2 + ∥v∥2

)
∥u− v∥. (3.2)

Considered as an operator from V into V ′, operator G is Lipschitz con-
tinuous on bounded subsets of V .

∥Gu−Gv∥V ′ ≤ c
(
∥u∥2 + ∥v∥2

)
|∇(u− v)|2. (3.3)

Furthermore, operator G map weakly convergent sequences in V into
strongly convergent sequences in V ′.
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Proof. (i) and (ii) are clear. See [10] for (iii). □

When y is considered as a function with values in a Banach space X, let ẏ
denote its derivative with respect to t in an appropriate sense. Let

W [0, T ] = {y : y ∈ L2(0, T ;V ), ẏ ∈ L2(0, T ;H), ÿ ∈ L2(0, T ;V ′)},

where the derivatives are understood in the sense of distributions with the values
in V , H and V ′, see [16]. Space W [0, T ] becomes a Hilbert space, when its inner
product is set to be the sum of the inner products in the constituent spaces.

Definition 3.2. Let y0 ∈ V, y1 ∈ H, T > 0, and f ∈ L2(0, T ;H). Function
y ∈ W [0, T ] is called a weak solution of the problem (2.17)-(2.18) with (2.19) or
(2.20), if y ∈ L∞(0, T ;V ), ẏ ∈ L∞(0, T ;H), equation

ÿ + a1(t)Ay + a2(t)By + a3(t)Gy +A4(t)y +A5(t)y +A6(t)ẏ + γẏ = f (3.4)

is satisfied in V ′ a.e. on [0, T ], and the initial conditions

y(0) = y0, ẏ(0) = y1 (3.5)

are satisfied in V and H correspondingly.

To shorten (3.4), we write (3.4) as follows.

ÿ + a1(t)Ay + a3(t)Gy +A1(t)y +A2(t)ẏ = f.

Then A1(t) = a2(t)B + A4(t) + A5(t) ∈ L(V, V ′) and A2(t) = A6(t) + γ ∈
L(H,V ′). Since y ∈ W [0, T ], A1(t)y ∈ L2(0, T ;V ′) and A2(t)ẏ ∈ L2(0, T ;V ′).
Also, G is Lipschitz continuous on bounded subsets of V , a3(t)Gy ∈ L2(0, T ;V ′).
So equation (3.4) makes sense. Also, by Lemma 3.4, functions y and ẏ are weakly
continuous in V and H correspondingly. Therefore conditions (3.5) make sense
as well.

Definition 3.3. Let X be a Banach space. Function y : [0, T ] → X is called
weakly continuous with values in X, if scalar functions t → ⟨y(t), w⟩ are contin-
uous for any w ∈ X ′.

Lemma 3.4 ([10]). Suppose that y ∈ L∞(0, T ;V ), and ẏ ∈ L∞(0, T ;H). Then,
after a modification on a set of measure zero in [0, T ],

(i) Function y ∈ C([0, T ];H). It is weakly continuous with values in V .
(ii) Function ẏ ∈ C([0, T ];V ′). It is weakly continuous with values in H.
(iii) Function t → By(t) is weakly continuous with values in H.
(iv) Function t → |∇y(t)|2 is absolutely continuous on [0, T ], and

1

2

d

dt
|∇y(t)|2 = (By, ẏ), a.e. on [0, T ]. (3.6)

(v) Function t → |∇y(t)|2 is absolutely continuous on [0, T ], and

1

4

d

dt
|∇y(t)|4 = |∇y(t)|2(By, ẏ), a.e. on [0, T ]. (3.7)



Weak solution of an arch equation on a moving boundary 57

Since ẏ ∈ L2(0, T ;H), ÿ ∈ L2(0, T ;V ′) the duality pairing ⟨ÿ, ẏ⟩ loses its
meaning. Lemma 3.5 makes up for deficiency of regularity of solutions.

Lemma 3.5. Let A : V → V ′ be defined by (3.1). Assume a1(t) is positive
and continuous on [0, T ] and assume that y ∈ L2(0, T ;V ), ẏ ∈ L2(0, T ;H), and
ÿ + a1(t)Ay ∈ L2(0, T ;H). Then, after a modification on a set of measure zero,
y ∈ C([0, T ];V ), ẏ ∈ C([0, T ];H) and, in the sense of distributions on (0, T ) one
has

(ÿ + a1(t)Ay, ẏ) =
1

2

d

dt
|ẏ|2 + 1

2
a1(t)

d

dt
∥y∥2. (3.8)

Proof. Equality (3.8) can be proved similar to Lemma 2.4.1 in [19] using the
truncation functions and the mollifiers.

Assumptions imply y ∈ L2(0, T ;V ), ẏ ∈ L2(0, T ;H), ÿ ∈ L2(0, T ;V ′). In
Lemma 2.3.1 in [19], y is weakly continuous from [0, T ] into V and ẏ is weakly
continuous from [0, T ] into H.

Equality (3.8) is modified as

2(ÿ + a1(t)Ay, ẏ) + 2ȧ1(t)∥y∥2 =
d

dt

[
|ẏ|2 + a1(t)∥y∥2

]
. (3.9)

By assumptions, 2(ÿ + a1(t)Ay, ẏ) + 2ȧ1(t)∥y∥2 ∈ L1(0, T ), function ϕ(t) =
|ẏ(t)|2 + a1(t)∥y(t)∥2 is continuous on [0, T ], and

ϕ(t)− ϕ(s) = |ẏ(t)− ẏ(s)|2 + 2(ẏ(s), ẏ(t)− ẏ(s))

+a1(t)∥y(t)− y(s)∥2 + 2a1(t)⟨Ay(s), y(t)− y(s)⟩
+[a1(t)− a1(s)]∥y(s)∥2.

This equality with weak convergence and continuity of ϕ(t) and a1(t) > 0 implies
y ∈ C([0, T ];V ), ẏ ∈ C([0, T ];H). □

Our method requires the following analysis of weakly convergent sequences.

Lemma 3.6 ([10]). Let X,Y be Banach spaces, and L : X → Y be a continuous
linear operator. Suppose that xn ⇀ x weakly in X, and the image of this sequence
{Lxn}∞n=1 is precompact in Y . Then Lxn → Lx strongly in Y , as n → ∞.

Lemma 3.7 on the embedding of Lp(0, T ;V ) spaces can be deduced from
general results established in [16, 10].

Lemma 3.7 ([16, 10]). Let h ∈ L1(0, T ). Suppose that yk ∈ L∞(0, T ;V ), ẏk ∈
L∞(0, T ;H), with ∥yk(t)∥ ≤ 1, and |ẏk(t)| ≤ h(t) a.e. on [0, T ], k ∈ N. Suppose
that yk ⇀ y, weakly in L2(0, T ;V ), as k → ∞. Then, after a modification on a
set of measure zero in [0, T ],

(i) yk → y in C([0, T ];H), as k → ∞,
(ii) |∇(yk − y)| → 0 as k → ∞.
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4. Existence and Uniqueness of solutions

We prove the existence and uniqueness of weak solutions of (3.4)-(3.5) using
Lion’s method of Galerkin approximations in [15]. First, we prove the energy
estimate, and establish the uniqueness of solutions. Then approximate solutions
are constructed, and their weak limit is shown to be the solution of the problem.

Lemma 4.1. Let γ ∈ R, y0 ∈ V, y1 ∈ H, T > 0, and f ∈ L2(0, T ;H).
Assume that y is a weak solution of the problem (3.4)-(3.5). Then y ∈ W [0, T ]∩
C([0, T ];V ), ẏ ∈ C([0, T ];H), and

|ẏ(t)|2 + ∥y(t)∥2 ≤ c

(
|y1|2 + ∥y0∥2 + ∥y0∥4 +

∫ t

0

|f(s)|2 ds
)

(4.1)

for any t ∈ [0, T ]. The constant c is dependent only on t.

Proof. Rewrite equation (3.4) as

ÿ + a1(t)Ay = f − a3(t)Gy −A1(t)y −A2(t)ẏ. (4.2)

Lemma 3.1 and y ∈ L∞(0, T ;V ) imply that

a3(t)Gy,A1(t)y ∈ L2(0, T ;H),

and ẏ ∈ L2(0, T ;V ) imply that

A2(t)ẏ ∈ L2(0, T ;H).

In addition, f ∈ L2(0, T ;H). Therefore ÿ + a1(t)Ay ∈ L2(0, T ;H), and Lemma
3.5 is applicable. Thus y ∈ W [0, T ] ∩ C([0, T ];V ), ẏ ∈ C([0, T ];H).

Take the inner product of (4.2) with ẏ, and use Lemma 3.5 to get

1

2

d

dt
|ẏ|2 + 1

2
a1(t)

d

dt
∥y∥2 = (f − a3(t)Gy −A1(t)y −A2(t)ẏ, ẏ).

By (3.7) we have

1

2

d

dt

{
|ẏ|2 + a1(t)∥y∥2 +

1

2
a3(t)|∇y|4

}
+ γ|ẏ|2 (4.3)

=
1

2
ȧ1(t)∥y∥2 +

1

4
ȧ3(t)|∇y|4 − (A1(t)y, ẏ)− (A6(t)ẏ, ẏ) + (f, ẏ).

Integrating (4.3) over [0, t] we get

|ẏ|2 + ∥y∥2 + |∇y|4 (4.4)

=
c2
c1

(
∥y0∥2 + |y1|2 + |∇y0|4 +

∫ t

0

∥y∥2 + |∇y|4 + |ẏ|2 + |f |2
)
ds,

where

c1 =
1

4
min {a1(t), a3(t), 1} ,

c2 =
1

2
max {|a1(t)|, |ȧ1(t)|, |a2(t)|, |a3(t)|, |ȧ3(t)|, |a4(x, t)|, |a5(x, t)|, |γ|, 1} .
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Here (A6(t)ẏ, ẏ) = 0 is used. Now |∇y0|2 ≤ c3∥y0∥2, and applying Gronwall’s
inequality to (4.4) gives (4.1). □

Lemma 4.2. Let γ ∈ R, y0,i ∈ V, y1,i ∈ H, T > 0, and fi ∈ L2(0, T ;H).

(i) Let yi, i = 1, 2 be two solutions of the abstract problem

ÿi + a1(t)Ay + a3(t)Gyi +A1(t)yi +A2(t)ẏi = fi,

yi(0) = y0,i ∈ V, ẏi(0) = y1,i ∈ H.

Then z = y2 − y1 satisfies

|ż(t)|2 + ∥z(t)∥2 ≤ C
(
|z1|2 + ∥z0∥2 + ∥z0∥4 + ∥f2 − f1∥2L2(0,T ;H)

)
. (4.5)

(ii) The solution of the problem (3.4)-(3.5) is unique.

Proof. The difference z = y2 − y1 satisfies

z̈ + a1(t)Az (4.6)

= −a2(t)z − a3(t)(Gy2 −Gy1)−A1(t)z −A2(t)ż + f2 − f1.

Since yi ∈ L∞(0, T ;V ), fi ∈ L2(0, T ;H), ẏi ∈ L2(0, T ;V1) and

|Gy2(t)−Gy1(t)| ≤ C∥y2(t)− y1(t)∥, t ∈ [0, T ],

the right term of (4.6) belongs to L2(0, T ;H).
According to the same argument as the proof of Lemma 4.1 it is easily to

obtain inequality (4.5). The uniqueness follows from (4.5). □

Lemma 4.3 ([10]). System {φk}∞k=1 is an orthonormal basis in H. System
{ 1
λk

φk}∞k=1 is an orthonormal basis in V .

Lemma 4.4 ([10]). Let m ∈ N, and the operator Pm : H → H be defined by

Pmh =

m∑
k=1

(h, φk)φk, h ∈ H. (4.7)

(i) Operator Pm is an orthogonal projection in H, with |Pmh| ≤ |h| for any
h ∈ H. Also, |Pmh− h| → 0, as m → ∞.

(ii) Operator Pm is an orthogonal projection in V , with ∥Pmv∥ ≤ ∥v∥ for
any v ∈ V . Also, ∥Pmv − v∥ → 0, as m → ∞.

Definition 4.5. Let m ∈ N. Function ym is called an approximate solution
of the problem (3.4)-(3.5), if ym ∈ W [0, T ] ∩ L∞(0, T ;V ), ẏm ∈ L∞(0, T ;H),
equation

ÿm + a1(t)Aym + a3(t)Gym +A1(t)ym +A2(t)ẏm = Pmf (4.8)

is satisfied in V ′ a.e. on [0, T ], and the initial conditions

ym(0) = Pmy0, ẏm(0) = Pmy1 (4.9)

are satisfied in V and H correspondingly.
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Lemma 4.6. Let γ ∈ R, y0 ∈ V, y1 ∈ H, T > 0, and f ∈ L2(0, T ;H).
Then there exists a unique solution ym of the approximate problem (4.8)-(4.9).
This solution satisfies ym, ẏm ∈ C([0, T ];Vm), ÿm ∈ L2(0, T ;Vm), where Vm =
span{φk, k = 1, 2, . . .m}. Furthermore, for any t ∈ [0, T ]

|ẏm(t)|2 + ∥ym(t)∥2 ≤ c

(
|y1|2 + ∥y0∥2 + ∥y0∥4 +

∫ t

0

|f(s)|2 ds
)
, (4.10)

where the constant c is independent of m. Also, there exist C = C(u0, v0, f)
independent of m, such that

∥ÿm∥L2(0,T ;V ′) ≤ C (4.11)

for any m ∈ N.

Proof. Let m ∈ N. Arguing as in Lemma 4.2, we conclude that the solution of
the problem (4.8)-(4.9) is unique. Let

ym(t) =

m∑
j=1

gjm(t)φj ,

where functions gj,m(t), j = 1, 2, . . . ,m are the solutions of the following system
of m equations

(ÿm + a1(t)Aym + a3(t)Gym +A1(t)ym +A2(t)ẏm, φk) = (Pmf, φk), (4.12)

(ym(0), φk) = (Pmy0, φk), (ẏm(0), φk) = (Pmy1, φk),

where k = 1, 2, . . . ,m. Since (∇φk,∇φj) = 0 for k ̸= j, and |∇φk|2 = λk, we
get an explicit expression for (4.12)

g̈km +

m∑
j=1

(a6(x, t)φj , φk)ġjm(t) + γġkm + a1(t)λ
2
kgkm + a2(t)λkgkm

+ a3(t)λ
2
k

 m∑
j=1

|gjm|2
 gkm +

m∑
j=1

([a4(x, t) + a5(x, t)]φj , φk)gjm = (f, φk)

gkm(0) = (y0, φk), ġkm(0) = (y1, φk),

where k = 1, 2, . . . ,m. This initial value problem for the system of m ODE has
unique solutions satisfying gkm, ġkm ∈ C[0, T ], g̈k,m ∈ L2[0, T ]. Thus ym, ẏm ∈
C([0, T ];Vm), ÿm ∈ L2(0, T ;Vm).

Now we show that function ym is a solution of equation (4.8). This equation
has to be satisfied in V ′. Since span{φk, k ∈ N} is dense in V ′, it is enough
to check that equations (4.8) are satisfied for any φk, k ∈ N. However, for
1 ≤ k ≤ m equations (4.8) are satisfied by the construction of ym, and for
k > m equations (4.8) become 0 = 0.

Inequality (4.10) is derived as in Lemma 4.1, using ∥Pmy0∥ ≤ ∥y0∥, |Pmy1| ≤
|y1|, and |Pmf | ≤ |f |. Since ẏm ∈ C([0, T ];Vm), a3(t)Gym+A1(t)ym+A2(t)ẏm ∈
L2(0, T ;H). So, we can use Lemma 3.5, and inequality (4.10) is derived as in
Lemma 4.1.
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It remains to derive inequality (4.11). Let φ ∈ V . Lemma 3.1 and (2.22)
imply

|⟨a1(t)Aym, φ⟩| ≤ c∥ym∥ ∥φ∥, |(A1(t)ym, φ)| ≤ c∥ym∥ ∥φ∥,
|(a3(t)Gym, φ)| ≤ c∥ym∥3 ∥φ∥, |(A6(t)ẏm, φ)| ≤ c|ẏm| ∥φ∥,
|(γẏm, φ)| ≤ c|ẏm| ∥φ∥.

By (2.22) we have

|⟨ÿm, φ⟩| ≤ C(|ẏm|+ ∥ym∥+ ∥ym∥3 + |f |)∥φ∥,

that is,

∥ÿm∥V ′ ≤ C(|ẏm|+ ∥ym∥+ ∥ym∥3 + |f |).
Square both sides of this inequality, integrate it from 0 to T , and use estimate
(4.10) to get (4.11). □

Theorem 4.7. Let γ ∈ R, y0 ∈ V, y1 ∈ H, T > 0, and f ∈ L2(0, T ;H).

(i) There exists a unique weak solution y of the problem (3.4)-(3.5). Solution
y satisfies y ∈ W [0, T ] ∩ C([0, T ];V ), ẏ ∈ C([0, T ];H), and

|ẏ(t)|2 + ∥y(t)∥2 ≤ c

(
|y1|2 + ∥y0∥2 + ∥y0∥4 +

∫ t

0

|f(s)|2 ds
)

(4.13)

for any t ∈ [0, T ].
(ii) Solution y and its approximation ym satisfy

|ẏ(t)− ẏm(t)|2 + ∥y(t)− ym(t)∥2

≤ c

(
|y1 − Pmy1|2 + ∥y0 − Pmy0∥2 + ∥y0 − Pmy0∥4 +

∫ t

0

|f(s)− Pmf(s)|2 ds
)

(4.14)

for any t ∈ [0, T ].

Proof. By Lemma 4.6, the sequence of the approximate solutions ym, m ∈ N
is bounded in W [0, T ]. Since W [0, T ] is a reflexive space, we can find a sub-
sequence of ym (still denoted by ym) such that it and the derivatives ẏm, ÿm
are weakly convergent in the spaces L2(0, T ;V ), L2(0, T ;V1), and L2(0, T ;V ′)
correspondingly. Since the derivatives are taken in the distributional sense, it
follows that there exists y ∈ W [0, T ] such that

ym ⇀ y, ẏm ⇀ ẏ, ÿm ⇀ ÿ

weakly in the corresponding spaces. Estimate (4.11) also shows that the sequence
ym is bounded in L∞(0, T ;V ), and the sequence ẏm is bounded in L∞(0, T ;H).
Therefore y satisfies estimate (4.13).

We are going to show that y satisfies the problem (3.4)-(3.5).
By Lemma 4.6 we have

ÿm + a1(t)ym + a3(t)Gym +A1(t)ym +A2(t)ẏm = Pmf (4.15)
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in V ′, a.e. on [0, T ], and

ym(0) = Pmy0, ẏ(0) = Pmy1. (4.16)

Clearly, we can pass to the limit in V ′ for ÿm,A1(t)ym, Gym,A2(t)ẏm, and Pmf ,
as m → ∞. According to estimate (3.3) we have

∥Gym −Gy∥V ′ ≤ c(∥ym∥2 + ∥y∥2)|∇(ym − y)|2.
The norms ∥ym∥ and ∥y∥ are bounded by estimates (4.10) and (4.13). By Lemma
3.7, the weak convergence of ym to y in L2(0, T ;V ) implies that ym → y in
C([0, T ];H), and |∇(ym−y)|2 → 0 as m → ∞. Thus Gym → Gy in L2(0, T ;V ′),
and the passage to the limit as m → ∞ in (4.15) is justified.

Concerning the initial conditions (4.16), it was also argued in Lemma 3.7 that
the weak convergence of ym to y in L2(0, T ;V ) implies that ym(t) ⇀ y(t) weakly
in V for any t ∈ [0, T ]. Since ym(0) = Pmy0 → y0 in V , we conclude that
y(0) = y0. A straightforward modification of Lemma 3.7 shows that ẏm ⇀ ẏ
weakly in H for any t ∈ [0, T ]. Therefore ẏ(0) = y1.

The uniqueness of weak solutions is easily obtained from (4.5).
Part (ii) is obtained by using Lemma 4.2 with f1 = f, f2 = Pmf , and the

corresponding initial conditions. □

For Ω̃τ we introduce notations and inner products and norms similar to V,H
and V ′, this is, Hτ = L2(Ω̃τ ), Vτ = H1

0 (Ω̃τ ) ∩H2(Ω̃τ ) for the hinged boundary

condition and Vτ = H2
0 (Ω̃τ ) for the clamped boundary condition.

Theorem 4.8. Let cd ∈ R, w̃0 ∈ V0, w̃1 ∈ H0, T̃ > 0, and g̃ ∈ L2(0, T̃ ;Hτ ).
Then function w̃ satisfies (2.1)-(2.4)

w̃ ∈ L2(0, T̃ ;Vτ ), ˙̃w ∈ L2(0, T̃ ;Hτ ), ¨̃w ∈ L2(0, T̃ ;V ′
τ ). (4.17)

Proof. Equations (2.1)-(2.4) can be obtained by (2.6)-(2.8). Also, it is clear that

w̃ ∈ Vτ for τ . Now, w̃ ∈ L2(0, T̃ ;Vτ ) is from

∥w̃∥2
L2(0,T̃ ;Vτ )

=

∫ T̃

0

∫ β̃(τ)

α̃(τ)

w̃2
ξ̃ξ̃
dξ̃dτ

=
r2

ω0

∫ T

0

1

θ(t)3

∫ 1

0

{yxx(x, t)}2dxdt ≤ c∥y∥2L2(0,T ;V ) < ∞.

The remaining ones can be derived from (2.6)-(2.7) and (2.11) using the similar
way above. □

For the operator A with the clamped boundary condition, Vm = span{φk =√
2 sin(πx), k = 1, 2, . . .m}.

Example 4.9. All data are given by

y0 = hφ1, y1 = 0, α(t) = 0, β(t) = 0.9 + 0.1 sin(t), p = hφ1, h = 2, γ = 0.

Then since y0, y0, p ∈ V1, we have y = Y1(t)φ1(x) by Theorem 4.7. Figure 1
illustrates the graph showing the maximum value of w(ξ, τ) for each τ along
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with the graph of β(τ). As the domain diminishes due to the movement of
the boundary, we can observe that at each time τ , the maximum values within
region (0, β(τ)) are moving in the opposite direction. This aligns precisely with
our intended outcome.

Figure 1. The graphs of maxξ w(ξ, τ) for each τ and β(τ)
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