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WEAK SOLUTION OF AN ARCH EQUATION
ON A MOVING BOUNDARY'

DAEWOOK KIM, SUDEOK SHON, JUNHONG HA*

ABSTRACT. When setting up a structure with an embedded shallow arch,
there is a phenomenon where the end of the arch moves. To study the
so-called moving domain problem, one try to transform a considered non-
cylindrical domain into the cylindrical domain using the transform opera-
tor, as well as utilizing the method of penalty and other approaches.

However, challenges arise when calculating time derivatives of solutions
in a domain depending on time, or when extending the initial conditions
from the non-cylindrical domain to the cylindrical domain.

In this paper, we employ the transform operator to prove the existence
and uniqueness of weak solutions of the shallow arch equation on the mov-
ing domain as clarifying the time derivatives of solutions in the moving
domain.

AMS Mathematics Subject Classification : 37105, 35B40, 35Q74.
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1. Introduction

Let a shallow arch or an extensible beam be positioned over the interval [0, L].
Suppose that wg(&), £ € [0, L] is a shape when no load (¢ = 0) is applied to it.
The deflection w(&,t) of the shallow arch or extensible beam at £ € (0, L) and
7 > 0 can expressed by
2\ 9w w | dw
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where p is the mass density, A is the cross-section area of the arch, E is the
Young’s modulus, I is the moment of inertial of the cross-section, and ¢4 is the
air damping coefficient, see [11, 12].

This equation (1.1) has attracted a lot of interest in both engineering and
mathematics, and many papers examining its properties have been published.
Extensive research in the field of engineering has been dedicated to investigating
diverse phenomena, including chaotic motion, global dynamic behavior, reso-
nance, and buckling under various loads. Among the vast array of engineering
articles, we refer to see the review work [18] and references there.

Mathematical study has been started in [1, 2], and abstract study on infinite
dimensional spaces was summarized in [19], and the author has established the
fundamental study like the existence, uniqueness, regularity and stability of
solutions for equation (1.1).

When setting up a structure with an embedded shallow arch, there is a phe-
nomenon where the end of the arch moves. Studying issues related to the instal-
lation and removal of this structure with the moving end of the arch is crucial
for enhancing efficiency and ensuring safety. It is clear that the properties of
such the problem differ significantly from the problem with a fixed boundary.

In the studies conducted by [5] and [7], the primary focus was on investigat-
ing the existence, uniqueness and stability of solutions for (1.1) on a moving
domain. They studied the problems utilizing a methodology that converts the
non-cylindrical domain into a cylindrical domain. However, a notable issue arises
when calculating the time derivatives of solutions within the moving domain de-
pending on time. But, their studies didn’t address of this ambiguity.

To avoid this ambiguity, two alternative approaches were proposed for dif-
ferential equations other than (1.1). One approach involved the utilization of
the penalty method initiated by J. L. Lions. The method were discussed in [4]
and [20]. The other approach involved employing the Lie derivative through
push-forwards and pull-backs of functions, which was suggested in [17]. Another
general approach for utilizing the sub-differential operator on the moving domain
was explored in [3] and [14]. This method, known as the penalty method for a
single value operator as discussed in [6], [8], and [13]. Since the differential high-
est operator in theirs studies is A, there was no difficulty in extending the initial
conditions from the non-cylindrical domain to the cylindrical domain. However,
since (1.1) is containing A%, the extension of the initial conditions cannot be
carried out in a manner similar to the process involving A.

In this paper, we prove the existence and uniqueness of weak solutions by using
the transform operator as the first research step. To utilize this method, certain
conditions must be imposed to facilitate the calculation of time derivatives within
the moving domain depending on time. It is enough that the velocity of the
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moving boundary is bounded, and we want to see (2.21) and description below
it.

This paper establishes the uniqueness and existence of weak solutions for the
initial boundary problem described on the moving domain. In Section 2, we
introduce a model equation for the shallow arch defined on the time-dependent
moving domain and derive its dimensionless equation on the cylindrical problem
by using the transform operator. In Section 3, we gather relevant materials
and their associated proofs and prove the existence and uniqueness of weak
solutions in proper Hilbert spaces. In Section 4, we establish the existence and
uniqueness of weak solutions for the proposed equations on both the cylindrical
and non-cylindrical domains. Furthermore, we provide a numerical example that
demonstrates the validity of the model equation.

2. Dimensionless model

Let us derive a dimensionless model equation by carefully considering the
physical parameters. Let (2. = (a(7), (7)) C 2 = (0, L) be a domain dependent
of the time variable 7 € (0,T). Put 0(7) = B(1) — a(7).

Q= |J @ x{r}andQ=0x(0,7).
O<T<’f

By considering (1.1) we introduce the system in the moving domain Q governed
by

2w (. - B aw|? -\ 82w P O -
pAaTz—<a(T)+b(T) /&(T) P d¢ 8—52+E18—£4+c¢15 =g(&7) (21)
with
BT 195 12 L
a(r) = ,LA/ 00\ 4 f(r) = 24
20(7) Jary | 06 20(7)
and
.z My
9(577—) =EI (:)54 +q<£77—)
with the initial conditions
oz . 0w, - . ~
W(E,0) = 1o, ai:(g,O) = @y in (a(0), 3(0)), (2.2)

with the hinged boundary condition

w(a(r),7) = w(B(t), 7) = we(a(r), T) = we(

or with the clamped boundary condition

o

(r),7)=0forall T >0, (2.3)

w(a(r), 1) = w(B(1),7) = Wee(a(r), 7) = @55(5(7),7) =0forall7>0. (24)
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To transform the equations (2.1)-(2.4) in Q into an equations in @, let’s define
the transformation operator 7 : Q — @ by

TE ) = (67) = (5 ;(f)(t)L,T> .

Assume that the functions &(7) and ((7) satisfy
&, B e C?[0,T). (2.5)

Put w(,7) = (wo T=1)(&,7) = w(€, 7). All derivatives ofiy with respective
to £ and 7 are formally calculated by

Wy = &we + wr, (2.6)
Wrr = ’11)556/2 + w{fn + Zngfl + wrr,
Lk
k 7 = — k = ..
8§~w = G Ofw for k=1,2,---, (2.8)

where

’_ 7} 0/ ~/ " o__ i 0 (en! ~! _D(ep! ~ 11

§ =zl +al), ¢ = = {29 (€0 +&'L) — 0(¢6" + G L)}.
Putting all derivatives (2.6)-(2.8) into (2.1) we have the equation for w(¢,7) on
Q satisfying

pA(wee€? + wel” + 2wrel + wer) (2.9)
L2 Lb(r) ["|ow|® |\ &*w
MTESE (“(TH é(r)/o o€| ) ve
EIL* & .
H3imy7 ger el + ) = g(a7)
with
_ EBAL [F|0w|? _ EA
o) =~ /O G| e =
and o
06 = G et 067 a6 7) = e+ o).

Change of variables as follows:

w—é _v =7 wo = Er—w£ t=w G
_Lvy_rvp_Elra 0= pAv - A’ - OTvv_pAw0~
by

at)=a(r)=a <t) L B(t) = B(1),0(t) = 6(r). (2.10)
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Using these the variables and the boundary functions we have

rw
Wr = TWoYt, Wrr = ngym Wre = 7 ytma ag w = Lk akyv (211)
& (1) = wod! (t), B (1) = woB'(t), 0" (1) = web'(t) (2.12)
and
/ Lwy / / 7 LWO / / / " "
& =- 7 — (20" + ), ¢ = {20" (20" + &) — O(x0" + ")} . (2.13)
From (2.10)-(2.13), the first term and last term in (2) are written by
pA(wee€? + wel” + 2w, + wrr) (2.14)
1
= rwipA [92 (20 4+ )y + 72 {20 (26’ + ') — 0(x0" + ")} ya
2 / /
—5(959 + &) yta + Y1t
and

1
ca(we€’ +w;) = rwocy {—9(559’ +a )y, + yt} : (2.15)

Finally, putting (2.10)-(2.15) into we get the dimensionless equation

Yt + al(t)yzwww - <a2(t) + Clg(t)/ y¢|2d-r> Yoo + a4($,t)yw (216)
Q

+a5 (I, t)yxw + GG(LIJ, t)ywt + YYt = f(xa t)7

where
1 1 Yoy |? 1
° al(t) = 077 CLQ(t) = _ﬁ % dﬂf, Clg(t) = ﬁ’
1
o ay(w,t) = ] {20/ (20" + ') — 6(x0" + ")} — %(me’ +a’)
0/ \2 2 9/ !
o as(z,t) = (31:720‘)7 ag(z,t) = _%7

L4 f(x t) 9(1)4 %Lyo —|—p($,t), p('T’at) = ngﬁQ(Lx7w0_1t)'
From now on, let € = (a(t), B(t)) C € = (0,1) be a domain dependent of
the time variable t € (0,T),T = woT, and

U @ x{t} and Q = x (0,T).
0<t<T
We consider the initial and boundary valued problem as follows:

ot + 01 ()Yanse — (a2<t> aslt) [ yx|2dx) You + as(z. Hys (2.17)
Q

—|—a5(m, t)yx;n + a6(x7 t)ymt + Yy = f(.’E, t) in Q
with the initial conditions
y(x,0) = yo(z), ye(x,0) = y1(z) in Qo, (2.18)
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with the hinged boundary condition
y(0,t) = y(1,t) = y=(0,t) = y(1,¢) = 0 for all t > 0, (2.19)
or with the clamped boundary condition
y(0,t) = y(1,t) = Y22 (0,t) = yux(1,2) = 0 for all ¢ > 0, (2.20)
In (2.18), yo(x) = wo(€) and ya(x) = wy (€) for € € 2y = (a(0), B(0)).

We need specific conditions necessary to ensure the validity of all derivatives
(2.6)-(2.8). Condition Q, C Q,45,h > 0 would be sufficient, but it may not

always hold. We assume that for any f € Q, there is h > 0 such that
£eQ,ypfor0<h<h. (2.21)

Assumption (2.21) is obtainable because |&'(7)| and |3/ ()| are bounded from
(2.5). Let ¢ € Q2 and consider &(7) only. Since £, is open, d = & — &(7) > 0.
Integrating &'(t) over the interval [r, 7 + h| yields

|a(T + h) — a(r)] < h max |&' (7).
T€[0,T]

We can take h to give the inequality

d
|a(r +h) —a(r)| < B for 0 < h < h.
This inequality means £ € Q. for sufficiently small i > 0.
Assumption (2.5) implies that there is a constant ¢ independent of x and ¢
satisfying

la;(8)], |a;(t)], |ai(x, t)|, |a;(z,t)] < c for all (z,t) € [0,1] x [0,T]. (2.22)

3. Problem setup

Let us introduce Hilbert spaces for solving (2.17)-(2.18) with (2.19) and (2.17)-
(2.18) with (2.20). Let the Hilbert space H = L*(Q) have the norm |u|, and
the inner product (u,v) fQ x)dz. For the hinged boundary conditions
we choose V = H}(Q) N HQ(Q), and for the clamped boundary conditions let
V = HZ(Q). In both cases V is a Hilbert space with the inner product ((u,v)) =
(Upg, Vg ), and the norm ||u|| = |uge|, u,v € V. This norm is equivalent to the
standard norm in H?(2), see [9]. It implies that ((u,v)) = 0 deduces (uzv,) = 0.

Since C§°(2) is dense in H, it follows that V' is densely embedded in H. In
fact, the embedding is compact and continuous. Identifying H with its dual
gives a Gelfand five fold V € H C V', where the duality pairing (-, -) between
V and its dual V"’ is consistent with the inner product in H.

First of all, we introduce the operator A2u = A%u, u € D(A.) = H*(Q) N
HZ(Q) for the clamped boundary condition, and the operator AZu = A%u, u €
D(AL) = {u € HYQ) N HYQ) : Au = 0 on T'} for the hinged boundary
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condition. Then A2 and A? generate coercive bilinear forms on V = HZ(Q2) and
V = H} () N H?(Q), respectively. Hence, A = A? = A? defined by

(Au,v) = / Au Avdz, uw,veV (3.1)
Q

is a self-adjoint, strictly positive operator on V = HZ(Q) or V = H}(Q)NH?(Q).
It is clear that A is a linear continuous operator from V to V', which denotes
Ae L(V,V").

Since operator A is a self-adjoint, strictly positive operator in V and (un-
bounded) in H, see [19, Section 2.2.1]. Its inverse A~! is also self-adjoint in
H. Since the injection of V into H is compact, A~! is a compact operator
in H. Accordingly, there exists a complete orthonormal sequence of eigen-
functions {¢x}32,; C D(A). The corresponding eigenvalues py, k € N satisfy
Apr = prpr, ke N

Using the interpolation theory ([19, section 2.2.1]), one can define various
fractional powers of A. In particular, one can show that A1/2 = —B € L(V,H).
This positive operator has the same eigenfunctions ¢y as A, and its eigenvalues
Ag satisfy A\f = g, k € N.

To set up the weak formulation of the problem we introduce operators A;,i =
4,5,6 and G, corresponding to the terms of equation (2.17).

Through this paper, constant ¢ denotes various constants in all estimates, and
it is independent of .

Lemma 3.1 ([10]). (i) Define operator A;(t),i = 4,6 by
(4;(t)u,v) = / ai(z,)u, vde, u,veV.
Q

Then A;(t) € L(V,H) and Ag(t) € L(H, V).
(i) Define operator As(t) by

(A5(t)u,v) = / as(z,t)ugy v dz, u,v e V.
Q

Then As(t) € L(V, H).
(iii) Define operator G by
Gu = |Vul*?Bu, uecV.
Then G is a monlinear continuous operator from V into H, which is
Lipschitz continuous on bounded subsets of V.

|Gu = Go| < c([Jull® + []|*) llu — v]l. (3:2)

Considered as an operator from V into V', operator G is Lipschitz con-
tinuous on bounded subsets of V.

IGu = Gollvr < e([lull® + [[0]|*) IV (u — ). (3:3)

Furthermore, operator G map weakly convergent sequences in V into
strongly convergent sequences in V.
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Proof. (i) and (ii) are clear. See [10] for (iii). O

When y is considered as a function with values in a Banach space X, let ¢
denote its derivative with respect to ¢ in an appropriate sense. Let

W[0,T)={y : y€ L*(0,T;V), g€ L*0,T;H), ijeL*0,T;V")},

where the derivatives are understood in the sense of distributions with the values
in V, H and V', see [16]. Space W0, T] becomes a Hilbert space, when its inner
product is set to be the sum of the inner products in the constituent spaces.

Definition 3.2. Letyo € V, y1 € H, T > 0, and f € L?(0,T; H). Function
y € W[0,T] is called a weak solution of the problem (2.17)-(2.18) with (2.19) or
(2.20), if y € L>=(0,T;V), y € L*>(0,T; H), equation

§+ai(t)Ay + az(t) By + az(t)Gy + As(t)y + As()y + As(t)y + v = f (3.4)

is satisfied in V' a.e. on [0,T], and the initial conditions
y(0) =vo, H(0)=m (3:5)
are satisfied in V' and H correspondingly.
To shorten (3.4), we write (3.4) as follows.
J+a1(t)Ay + az(O)Gy + A (t)y + A2()y = f.

Then .Al(t) = ag(t)B + A4(t) + A5(t) € E(‘/, V/) and Az(t) = A6(t + NS
L(H,V'). Since y € W[0,T], A1 (t)y € L*(0,T; V') and Ax(t)y € L*(0,T;V").
Also, G is Lipschitz continuous on bounded subsets of V, a3(t)Gy € L*(0,T; V").
So equation (3.4) makes sense. Also, by Lemma 3.4, functions y and g are weakly
continuous in V' and H correspondingly. Therefore conditions (3.5) make sense
as well.

Definition 3.3. Let X be a Banach space. Function y : [0,T] — X is called
weakly continuous with values in X, if scalar functions t — (y(t),w) are contin-
uous for any w € X'.

Lemma 3.4 ([10]). Suppose that y € L>=(0,T;V), and y € L*°(0,T; H). Then,
after a modification on a set of measure zero in [0,T],
(i) Functiony € C([0,T]; H). It is weakly continuous with values in V.
(it) Function y € C([0,T];V'). It is weakly continuous with values in H.
(#ii) Function t — By(t) is weakly continuous with values in H.
(iv) Function t — |Vy(t)|? is absolutely continuous on [0,T], and

1d .
L 19y = (By.i). ac.on[0.1] (3.
(v) Function t — |[Vy(t)|? is absolutely continuous on [0,T], and
1d .
IVy(®)|* = [Vy(0)[*(By,5), a.e.on[0,T]. (3.7)

4dt
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Since yy € L?(0,T; H), 4 € L*(0,T;V’) the duality pairing (jj,y) loses its
meaning. Lemma 3.5 makes up for deficiency of regularity of solutions.

Lemma 3.5. Let A : V. — V' be defined by (3.1). Assume ay(t) is positive
and continuous on [0,T] and assume that y € L*(0,T;V), y € L?>(0,T; H), and
i +ay(t)Ay € L2(0,T; H). Then, after a modification on a set of measure zero,
y € C([0,T]; V), y € C([0,T]; H) and, in the sense of distributions on (0,T) one
has
1d 1 d

G+ m(D)Ay,5) = 3 il + ar(t) oyl (39
Proof. Equality (3.8) can be proved similar to Lemma 2.4.1 in [19] using the
truncation functions and the mollifiers.

Assumptions imply y € L?(0,T;V), y € L*(0,T;H), 4 € L?>(0,T;V’). In
Lemma 2.3.1 in [19], y is weakly continuous from [0, 7] into V and g is weakly
continuous from [0, 7] into H.

Equality (3.8) is modified as

2+ an() Ay 5) + 2 (Ol = & WP +a@lyl?]. (39

By assumptions, 2(§ + a1(t) Ay, ) + 2a1(t)||lyl|*> € L*(0,T), function ¢(t) =
[9(t)? + a1 (t)||y(t)||? is continuous on [0, 7], and

o) — ¢(s) = 19(t) — 5 (s)I” + 2(3(s), 9(t) — 9(s))
+ar (t)lly(t) — y(s)|I* + 2a1(£)(Ay(s), y(t) — y(s))
+Haa(t) — ar(s)]lly(s)]1*.

This equality with weak convergence and continuity of ¢(¢) and aq(t) > 0 implies
y € C([0,T}; V), y € C([0,T]; H). O

Our method requires the following analysis of weakly convergent sequences.

Lemma 3.6 ([10]). Let X,Y be Banach spaces, and L : X — Y be a continuous
linear operator. Suppose that x,, — x weakly in X, and the image of this sequence
{Lx,}52, is precompact in' Y. Then Lz, — Lz strongly in'Y, as n — co.

Lemma 3.7 on the embedding of LP(0,T;V) spaces can be deduced from
general results established in [16, 10].

Lemma 3.7 ([16, 10]). Let h € L'(0,T). Suppose that yx € L>=(0,T;V), i €
L>(0,T; H), with ||y ()|l <1, and |gk(t)| < h(t) a.e. on[0,T], k € N. Suppose
that yp, — y, weakly in L?>(0,T;V), as k — co. Then, after a modification on a
set of measure zero in [0,T],

(i) yr =y in C([0,T]; H), as k — oo,

(i) |V(yr —y)| — 0 as k — oo.
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4. Existence and Uniqueness of solutions

We prove the existence and uniqueness of weak solutions of (3.4)-(3.5) using
Lion’s method of Galerkin approximations in [15]. First, we prove the energy
estimate, and establish the uniqueness of solutions. Then approximate solutions
are constructed, and their weak limit is shown to be the solution of the problem.

Lemma 4.1. Let v € R, yo € V, y1 € H, T > 0, and f € L*(0,T;H).
Assume that y s a weak solution of the problem (3.4)-(3.5). Theny € WI[0,T]N
c([0,T; V), 5 € C([0,T}; H), and

GO+ ly®]* < e (Iy1|2 + lyoll* + llyoll* +/0 f(s)]? dS) (4.1)

for any t € [0, T). The constant c is dependent only on t.
Proof. Rewrite equation (3.4) as
i+ a1 (t)Ay = f —as(t)Gy — Ai(t)y — A2(t)5. (4.2)
Lemma 3.1 and y € L*°(0,7; V) imply that
az(t)Gy, Ai(t)y € L*(0,T; H),
and ¢ € L?(0,T;V) imply that
As(t)y € L*(0,T; H).

In addition, f € L%(0,T; H). Therefore §j + a1(t)Ay € L?(0,T; H), and Lemma
3.5 is applicable. Thus y € W[0,T)NC([0,T);V), y € C([0,T]; H).
Take the inner product of (4.2) with ¢, and use Lemma 3.5 to get

S + 20 D = (7~ as(Gy — A0y — As(0)5.5).

2dt
By (3.7) we have
2L L1 + o)l + 2as@IVyl* b+l (4.3)
2 dt ! 98 '
1. 1. . - .
= 5Oyl + 3as(OIVy[* = (Ai()y,9) = (As(£)3,9) + (£,9)-
Integrating (4.3) over [0, t] we get
91 + llyll* + [Vy|* (4.4)

t
C2 .
=2 (Lol + P+ Tl + [ Iyl + 191 + G+ 1112 s,
0
where

¢ = %min {a1(t),as(t), 1},

c = %max{\al(t)lv |ax (8], laz(®)], las ()], [as (D], laa (2, t)]; |as (=, D)], [7], 1} -
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Here (Ag(t)y,9) = 0 is used. Now |[Vyo|? < c3]|yol|?, and applying Gronwall’s
inequality to (4.4) gives (4.1). O
Lemma 4.2. Lety€R, yo;, €V, y1;, € H, T >0, and f; € L*(0,T; H).
(i) Lety;, i =1,2 be two solutions of the abstract problem
i + a1 (t) Ay + az(t)Gyi + A (t)y: + A2y = fi,
¥i(0) =vo; €V, 9:(0) =91, € H.
Then z = yo — y1 satisfies
2P + =) < C (|21|2 +llzoll* + llzoll* + 12 — f1||%2(0,T;H)) - (45)
(i) The solution of the problem (3.4)-(3.5) is unique.
Proof. The difference z = yo — y; satisfies
Z4a1(t)Az (4.6)
= —ag(t)z — az(t)(Gy2 — Gyr) — A1 (t)z — A2(t)2 + f2 — f1.
Since y; € L>(0,T;V), fi € L?>(0,T; H), ; € L*(0,T;V;) and
Gya2(t) = Gya(t)| < Clly2(t) =y (@), ¢ €10,T7,

the right term of (4.6) belongs to L(0,T; H).
According to the same argument as the proof of Lemma 4.1 it is easily to
obtain inequality (4.5). The uniqueness follows from (4.5). O

Lemma 4.3 ([10]). System {¢r}3>, is an orthonormal basis in H. System
{i@k}zoﬁ is an orthonormal basis in V.

Lemma 4.4 ([10]). Let m € N, and the operator Py, : H — H be defined by
Pnh =Y (h,or)pr, heH. (4.7)
k=1

(i) Operator P, is an orthogonal projection in H, with |Py,h| < |h| for any
h e H. Also, |Ppyh —h| — 0, as m — oco.

(i) Operator P, is an orthogonal projection in V, with ||Pyv| < |jv| for
any v € V. Also, ||Ppv —v| = 0, as m — co.

Definition 4.5. Let m € N. Function y,, is called an approximate solution
of the problem (3.4)-(3.5), if ym € W[0,T] N L0, T;V), ¢m € L>(0,T; H),
equation

Gm + a1(t) Aym + a3(t)Gym + A1 (H)ym + A2(t)gm = P f (4.8)
is satisfied in V' a.e. on [0,T], and the initial conditions

are satisfied in V and H correspondingly.
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Lemma 4.6. Let v € R, yo € V, y1 € H, T > 0, and f € L*(0,T;H).
Then there exists a unique solution y,, of the approximate problem (4.8)-(4.9).
This solution satisfies Yum, Ym € C([0,T]; Vi), ijm € L*(0,T; Vi), where Vy, =
span{pk, k=1,2,...m}. Furthermore, for anyt € [0,T]

t
[Gm (OF + lym O] < ¢ (Iyll2 + llyoll* + llyol* +/O If(8)|2d8> ;o (410

where the constant ¢ is independent of m. Also, there exist C = C(ug, v, f)
independent of m, such that

Gl L2 0,7y < C (4.11)
for any m € N.

Proof. Let m € N. Arguing as in Lemma 4.2, we conclude that the solution of
the problem (4.8)-(4.9) is unique. Let

Ym(t) = Zgjm(t)sﬁj,

where functions g, ., (t), j =1,2,...,m are the solutions of the following system
of m equations

(i + a1(t) Ay + a3(t) GYm + AL () Ym + A2(D)Um, 0x) = (P f, 0x),  (4.12)
(Ym(0), k) = (Pnyo, ¥k)s  (Um(0), k) = (P, Pk),

where k = 1,2,...,m. Since (Vgy, Vo;) = 0 for k # j, and [V |> = A, we
get an explicit expression for (4.12)

Gem + Y (a6(2, )95, 08)35m (8) + YGkm + a1 (DNE g + a2(t) A Gm
j=1

+agAL [ D 1giml® | grom + Y ([@a(w,t) + as(@, )]s, o) gm = (f: ox)

j=1 j=1
gkm(o) = (yOa(Pk)7 gkm(o) = (yla(pk)a

where k = 1,2, ..., m. This initial value problem for the system of m ODE has

unique solutions satisfying gim, gkm € C[0, T, Gk.m € L2[0,T). Thus Ym, Jm €

C([0,T); Vin), Gim € L*(0,T; V).

Now we show that function y,, is a solution of equation (4.8). This equation
has to be satisfied in V’. Since span{yy, k € N} is dense in V', it is enough
to check that equations (4.8) are satisfied for any ¢r, k& € N. However, for
1 < k < m equations (4.8) are satisfied by the construction of y,,, and for
k > m equations (4.8) become 0 = 0.

Inequality (4.10) is derived as in Lemma 4.1, using || Pnyoll < llyoll, [Prmy1] <
1], and [Py f] < |f]. Since g € C(0, T); Vin), 3(£)Gm +As (6)gn-+As (£ €
L?(0,T;H). So, we can use Lemma 3.5, and inequality (4.10) is derived as in
Lemma 4.1.
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It remains to derive inequality (4.11). Let ¢ € V. Lemma 3.1 and (2.22)
imply
(a1(t) Aym, #)| < cllyml @ll, [(ArB)ym; ©)| < cllymll llell,
(a3(t)Gym, ©)| < cllyml® Iell, 1(As(t)gm, ©)| < climl llll,
| (Y 0)| < climl lleoll-
By (2.22) we have

(G, 0} < CJgm! + lymll + lymll® + [f DIl

that is,
Hym”V’ < C(‘ym| + ”ymH + ”ymH3 + |f‘)

Square both sides of this inequality, integrate it from 0 to T', and use estimate
(4.10) to get (4.11). O

Theorem 4.7. Let YER, yo €V, yy € H, T >0, and f € L*(0,T; H).

(i) There exists a unique weak solution y of the problem (3.4)-(3.5). Solution
y satisfies y € W0, TN C([0,T); V), y € C([0,T]; H), and

G + ly@I* < c (Iyl2 + llyoll* + llyoll* +/0 If(S)IQdS) (4.13)

for any t € [0,T].
(i) Solution y and its approzimation y,, satisfy

[9(t) = gm (O + lly(t) — ym ()]

t
<c (|y1 — Pt ]® + o — Pouioll® + [lyo — Pryoll* +/ |f(s) — P f(s)]? dS)
0
(4.14)

for any t € [0,T].

Proof. By Lemma 4.6, the sequence of the approximate solutions y,,, m € N
is bounded in WI0,T]. Since W0, T] is a reflexive space, we can find a sub-
sequence of y,, (still denoted by ¥,,) such that it and the derivatives ¢, m
are weakly convergent in the spaces L2(0,7;V), L?(0,T;V;), and L?(0,T;V")
correspondingly. Since the derivatives are taken in the distributional sense, it
follows that there exists y € W0, T] such that

Yn =Y Um =0, Um =Y
weakly in the corresponding spaces. Estimate (4.11) also shows that the sequence
Ym is bounded in L*°(0,T; V'), and the sequence ¢, is bounded in L*>°(0,T; H).
Therefore y satisfies estimate (4.13).

We are going to show that y satisfies the problem (3.4)-(3.5).
By Lemma 4.6 we have
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in V’, a.e. on [0,7T], and

Ym(0) = Pnyo, ¥(0) = Pny. (4.16)
Clearly, we can pass to the limit in V' for 4, A1 (£)Ym, GYm, A2(t)Ym, and Py, f,
as m — 00. According to estimate (3.3) we have

1Gym — Gyllv: < c(lyml® + 1191°)|V (ym — v)I*-

The norms ||y, || and ||y|| are bounded by estimates (4.10) and (4.13). By Lemma
3.7, the weak convergence of 4, to y in L?(0,7;V) implies that y,, — v in
C([0,T); H), and |V (ym —y)|* = 0 as m — oo. Thus Gy,,, — Gy in L*(0,T; V"),
and the passage to the limit as m — oo in (4.15) is justified.

Concerning the initial conditions (4.16), it was also argued in Lemma 3.7 that
the weak convergence of y,, to y in L2(0,7T; V) implies that y,, (t) — y(t) weakly
in V for any t € [0,7]. Since y,,,(0) = Pnyo — yo in V, we conclude that
y(0) = yo. A straightforward modification of Lemma 3.7 shows that g,, — y
weakly in H for any t € [0,T]. Therefore (0) = y;.

The uniqueness of weak solutions is easily obtained from (4.5).

Part (ii) is obtained by using Lemma 4.2 with f; = f, fo = P, f, and the
corresponding initial conditions. O

For 2, we introduce notations and inner products and norms similar to V, H
and V| this is, H, = L*(Q,), V; = H}(Q;) N H(Q,) for the hinged boundary
condition and V, = HZ(,) for the clamped boundary condition.

Theorem 4.8. Let cg € R, g € Vy, @y € Hy, T > 0, and § € L*(0,T; H,).
Then function W satisfies (2.1)-(2.4)

we L*(0,T;V;), e L*0,T;H,), weL*0,T;V)). (4.17)

Proof. Equations (2.1)-(2.4) can be obtained by (2.6)-(2.8). Also, it is clear that
W €V, for 7. Now, @ € L*(0,T;V;) is from

B(7)
I / P

72
=2 [ s | e 0ot < ol <
wo Jo
The remaining ones can be derived from (2.6)-(2.7) and (2.11) using the similar
way above. O

For the operator A with the clamped boundary condition, V,,, = span{¢y =
V2sin(rz), k=1,2,...m}.
Example 4.9. All data are given by
Yo = hp1,y1 = 0,a(t) =0,5(t) = 0.9+ 0.1sin(t),p = hpy, h = 2,7 =0.

Then since yo,yo,p € Vi, we have y = Y1(t)p1(x) by Theorem 4.7. Figure 1
illustrates the graph showing the maximum value of w(&,7) for each T along
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with the graph of B(7). As the domain diminishes due to the movement of
the boundary, we can observe that at each time T, the maximum values within
region (0, 5(7)) are moving in the opposite direction. This aligns precisely with
our intended outcome.

5 i B %

FIGURE 1. The graphs of maxe w(&, 7) for each 7 and §(7)
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