• Title/Summary/Keyword: Moving Object

Search Result 1,603, Processing Time 0.031 seconds

Optimal path planning for the capturing of a moving object

  • Hwang, Cheol-Ho;Lee, Sang-Hun;Ko, Jae-Pyung;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.186-190
    • /
    • 2003
  • In this paper, we propose an algorithm for planning an optimal path to capture a moving object by a mobile robot in real-time. The direction and rotational angular velocity of the moving object are estimated using the Kalman filter, a state estimator. It is demonstrated that the moving object is tracked by using a 2-DOF active camera mounted on the mobile robot and then captured by a mobile manipulator. The optimal path to capture the moving object is dependent on the initial conditions of the mobile robot, and the real-time planning of the robot trajectory is definitely required for the successful capturing of the moving object. Therefore the algorithm that determines the optimal path to capture a moving object depending on the initial conditions of the mobile robot and the conditions of a moving object is proposed in this paper. For real-time implementation, the optimal representative blocks have been utilized for the experiments to show the effectiveness of the proposed algorithm.

  • PDF

A Moving Object Tracking System from a Moving Camera by Integration of Motion Estimation and Double Difference (BBME와 DD를 통합한 움직이는 카메라로부터의 이동물체 추적 시스템)

  • 설성욱;송진기;장지혜;이철헌;남기곤
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.2
    • /
    • pp.173-181
    • /
    • 2004
  • In this paper, we propose a system for automatic moving object detection and tracking in sequence images acquired from a moving camera. The proposed algorithm consists of moving object detection and its tracking. Moving object can be detected by integration of BBME and DD method We segment the detected object using histogram back projection, match it using histogram intersection, extract and track it using XY-projection. Computer simulation results have shown that the proposed algorithm is reliable and can successfully detect and track a moving object on image sequences obtained by a moving camera.

A Study on the Stereo Vision System Design for the Displacement Estimation of Three-Dimensional Moving Object (3차원 이동물체의 변위평가를 위한 스테레오 비젼시스템 설계에 관한 연구)

  • 이주신
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.12
    • /
    • pp.1002-1016
    • /
    • 1990
  • This paper described design and implementation of stereo vision system, and also, proposed method for displacement estimation of 3-D moving object using this system. The extraction of moving object is obtained by difference image algorithm. Geometrical position of 3-D moving object is calculated form the mapping of center area of two's 2-D object. 3-D coordinate position produced space depth, moving velociity, distance, moving track and proved displacement estimation of 3-D moving object.

  • PDF

A Single Moving Object Tracking Algorithm for an Implementation of Unmanned Surveillance System (무인감시장치 구현을 위한 단일 이동물체 추적 알고리즘)

  • 이규원;김영호;이재구;박규태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.11
    • /
    • pp.1405-1416
    • /
    • 1995
  • An effective algorithm for implementation of unmanned surveillance system which detects moving object from image sequences, predicts the direction of it, and drives the camera in real time is proposed. Outputs of proposed algorithm are coordinates of location of moving object, and they are converted to the values according to camera model. As a pre- processing, extraction of moving object and shape discrimination are performed. Existence of the moving object or scene change is detected by computing the temporal derivatives of consecutive two or more images in a sequence, and this result of derivatives is combined with the edge map from one original gray level image to obtain the position of moving object. Shape discri-mination(Target identification) is performed by analysis of distribution of projection profiles in x and y directions. To reduce the prediction error due to the fact that the motion cha- racteristic of walking man may have an abrupt change of moving direction, an order adaptive lattice structured linear predictor is proposed.

  • PDF

Optimal Trajectory Planning for Capturing a Mobile Object (이동물체 포획을 위한 최적 경로 계획)

  • 황철호;이상헌;조방현;이장명
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.8
    • /
    • pp.696-702
    • /
    • 2004
  • An optimal trajectory generation algorithm for capturing a moving object by a mobile robot in real-time is proposed in this paper. The linear and rotational velocities of the moving object are estimated using the Kalman filter, as a state estimator. For the estimation, the moving object is tracked by a 2-DOF active camera mounted on the mobile robot, which enables a mobile manipulator to track the mobile robot until the capturing moment. The optimal trajectory for capturing the moving object is dependent on the initial conditions of the mobile robot as well as the moving object. Therefore, real-time trajectory planning for the mobile robot is definitely required for the successful capturing of the moving object. The performance of proposed algorithm is verified through the real experiments and the superiority is demonstrated by comparing to other algorithms.

Kinematic Method of Camera System for Tracking of a Moving Object

  • Jin, Tae-Seok
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.145-149
    • /
    • 2010
  • In this paper, we propose a kinematic approach to estimating the real-time moving object. A new scheme for a mobile robot to track and capture a moving object using images of a camera is proposed. The moving object is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the active camera. Uncertainties in the position estimation caused by the point-object assumption are compensated using the Kalman filter. To generate the shortest time path to capture the moving object, the linear and angular velocities are estimated and utilized. The experimental results of tracking and capturing of the target object with the mobile robot are presented.

Efficient Tracking of a Moving Object Using Representative Blocks Algorithm

  • Choi, Sung-Yug;Hur, Hwa-Ra;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.678-681
    • /
    • 2004
  • In this paper, efficient tracking of a moving object using optimal representative blocks is implemented by a mobile robot with a pan-tilt camera. The key idea comes from the fact that when the image size of moving object is shrunk in an image frame according to the distance between the camera of mobile robot and the moving object, the tracking performance of a moving object can be improved by changing the size of representative blocks according to the object image size. Motion estimation using Edge Detection(ED) and Block-Matching Algorithm(BMA) is often used in the case of moving object tracking by vision sensors. However these methods often miss the real-time vision data since these schemes suffer from the heavy computational load. In this paper, the optimal representative block that can reduce a lot of data to be computed, is defined and optimized by changing the size of representative block according to the size of object in the image frame to improve the tracking performance. The proposed algorithm is verified experimentally by using a two degree-of-freedom active camera mounted on a mobile robot.

  • PDF

Trajectory Generation of a Moving Object for a Mobile Robot in Predictable Environment

  • Jin, Tae-Seok;Lee, Jang-Myung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.1
    • /
    • pp.27-35
    • /
    • 2004
  • In the field of machine vision using a single camera mounted on a mobile robot, although the detection and tracking of moving objects from a moving observer, is complex and computationally demanding task. In this paper, we propose a new scheme for a mobile robot to track and capture a moving object using images of a camera. The system consists of the following modules: data acquisition, feature extraction and visual tracking, and trajectory generation. And a single camera is used as visual sensors to capture image sequences of a moving object. The moving object is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the active camera. Uncertainties in the position estimation caused by the point-object assumption are compensated using the Kalman filter. To generate the shortest time trajectory to capture the moving object, the linear and angular velocities are estimated and utilized. The experimental results of tracking and capturing of the target object with the mobile robot are presented.

A Study on Tracking Algorithm for Moving Object Using Partial Boundary Line Information (부분 외곽선 정보를 이용한 이동물체의 추척 알고리즘)

  • Jo, Yeong-Seok;Lee, Ju-Sin
    • The KIPS Transactions:PartB
    • /
    • v.8B no.5
    • /
    • pp.539-548
    • /
    • 2001
  • In this paper, we propose that fast tracking algorithm for moving object is separated from background, using partial boundary line information. After detecting boundary line from input image, we track moving object by using the algorithm which takes boundary line information as feature of moving object. we extract moving vector on the imput image which has environmental variation, using high-performance BMA, and we extract moving object on the basis of moving vector. Next, we extract boundary line on the moving object as an initial feature-vector generating step for the moving object. Among those boundary lines, we consider a part of the boundary line in every direction as feature vector. And then, as a step for the moving object, we extract moving vector from feature vector generated under the information of the boundary line of the moving object on the previous frame, and we perform tracking moving object from the current frame. As a result, we show that the proposed algorithm using feature vector generated by each directional boundary line is simple tracking operation cost compared with the previous active contour tracking algorithm that changes processing time by boundary line size of moving object. The simulation for proposed algorithm shows that BMA operation is reduced about 39% in real image and tracking error is less than 2 pixel when the size of feature vector is [$10{\times}5$] using the information of each direction boundary line. Also the proposed algorithm just needs 200 times of search operation bout processing cost is varies by the size of boundary line on the previous algorithm.

  • PDF

A Segmentation Method for a Moving Object on A Static Complex Background Scene. (복잡한 배경에서 움직이는 물체의 영역분할에 관한 연구)

  • Park, Sang-Min;Kwon, Hui-Ung;Kim, Dong-Sung;Jeong, Kyu-Sik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.321-329
    • /
    • 1999
  • Moving Object segmentation extracts an interested moving object on a consecutive image frames, and has been used for factory automation, autonomous navigation, video surveillance, and VOP(Video Object Plane) detection in a MPEG-4 method. This paper proposes new segmentation method using difference images are calculated with three consecutive input image frames, and used to calculate both coarse object area(AI) and it's movement area(OI). An AI is extracted by removing background using background area projection(BAP). Missing parts in the AI is recovered with help of the OI. Boundary information of the OI confines missing parts of the object and gives inital curves for active contour optimization. The optimized contours in addition to the AI make the boundaries of the moving object. Experimental results of a fast moving object on a complex background scene are included.

  • PDF