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ABSTRACT

In the field of machine vision using a single camera mounted on a mobile robot, although the detection and tracking
of moving objects from a moving observer, is complex and computationally demanding task. In this paper, we propose a
new scheme for a mobile robot to track and capture a moving object using images of a camera. The system consists of
the following modules: data acquisition, feature extraction and visual tracking, and trajectory generation. And a single
camera is used as visual sensors to capture image sequences of a moving object. The moving object is assumed to be a
point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of
the object based on the kinematics of the active camera. Uncertainties in the position estimation caused by the point-
object assumption are compensated using the Kalman filter. To generate the shortest time trajectory to capture the
moving object, the linear and angular velocities are estimated and utilized. The experimental results of tracking and
capturing of the target object with the mobile robot are presented.
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1. Introduction of the mobile robot'. There are several approaches' !>

that can be used to overcome the uncertainties of

Mobile robots have many application fields because of measuring the locations of the mobile robot or other
their high workability', They are especially necessary objects.

for tasks that are difficult and dangerous for men to In this paper, the position of an object was estimated

perform®™. Many researchers have shown interest in using the kinematics of an active camera and images of

mobile robots. Most of them have focused on successful the object assuming that it is flat and small on the floor.

navigation on reaching a fixed target point safely” The linear and angular velocities of the object were

81012182124 However, if a mobile robot is working under estimated for the mobile robot to predict the future

11,14,22

water or in space, the target object may move freely trajectory of the object, which plans the shortest time

Therefore, the ability of a mobile robot to process path to track and capture the moving object. A state

moving targets is necessary. If an active camera system is estimator was designed to overcome the uncertainties
applied to navigation and the tracking of moving objects, from the image data caused by the point-object
there will be many advantages'>?®. An active camera assumption and physical noises using a Kalman filter.
system capable of panning and tilting should be able to Based on the estimated velocities of the object, the pose
automatically calibrate itself and keep track of an object of the active camera was controlled to locate images of
of interest for a longer time interval without movement the object on the center of the image frame.
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The active camera system has the ability of panning
and tilting, as shown in Fig. 1. The position and posture
of the camera are defined with respect to the base frame.
According to the Denavit-Hartenberg convention, the
homogeneous matrix Eq. (1) can be obtained after
establishing the coordinate system and representing
parameters, as shown in Fig. 1.
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Fig. 1 Two d.o.f camera platform (Left) and its real
image (Right).
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In Fig. 1, Cc¢ (Xeeds Yeods Zecd) TEpTEsents a position
vector from the center of the mobile robot to the center
of camera lens. Each component of the vector can be
represented in terms of tilting angle, & , and panning
angle, g, of the CCD camera as follows:

X,y =1, sin(a) + 1, cos(a) cos( ) 2
Veea = L3 sin(B) 3)
z,; =1 +1, cos(a) - sin(a) cos( ) . 4

Also, an attitude vector of the homogeneous matrix
represents Roll( 8, ), Pitch(d, ) and Yaw( 8, ) angles by
tilting and panning angles of the camera as follows:

sin(a)sin(f)
cos?(a)sin?(B) +cos ()

Op = tan™!(

&)
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sin(a)cos(f)

(6)
\/cos2 (@)cos’(B) +sin*(B)

8, =tan”'(

6, =p. )
2.2 Relation between a camera and real
coordinates

To measure the distance from a camera to an object
using the camera images, at least two image frames that
are captured for the same object at different locations, are
necessary. Usually a stereo-camera system has been used
to obtain the distance information 2'. However there exist
uncertainties in feature point matching and it takes too
much time to be implemented in real-time. The proposed
approach requires only a frame to measure the distance
to the object from the CCD camera **, Since it is possible
by assuming that a point-object is located on the floor,
there also exist uncertainties in the position estimation.
To minimize the uncertainty in the position estimation
and to estimate the velocities of the moving object
together, a state estimator is designed based on the
Kalman filter.

The image coordinates for the point object, ( j , k),
is transformed into the image center coordinates which is
orientation invariant in terms of the Roll angle in Eq. (6),
Oy , and the size of the image frame, P, and P, , ( 7,
k'):

J'|_| cos(Br)
k| | sin(@y)

where P and Py represent X and y directional size of the

. i
—sin(@y )} 775 ®

cos(fg) P i
2

image frame in pixels respectively.
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Fig. 2 Estimation of position information from a mobile
robot.
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To estimate the real location, (X,, ¥, ), Boand ro
are estimated using the linear relationship between the
real object range within the view angle and the image
frame. That is, for a given set of (00 , ro), there is one-
to-one correspondence between the real object point and
the image point.

When a point image is captured at (j', k") on the
image center frame, the real object position, éo and ro s
can be estimated as follows, as illustrated in Fig. 3:

Side view

Top view
Fig. 3 Estimation of 7, and 6, .

" Z, ced (9)

cot(—-—0 +- )

9, =6, (10)
F,

=]

where 0, and 6, represent the x and y directional view
angles of the CCD camera, respectively.

The position of the object with respect to the robot
coordinates, (x, y) can be estimated using the 9Ao and rA;,
8 as follows:

Xy = Vg - €OS(6y ) + 1y c08(8y + ) (1)
Vo =g -SIn(Gy )+r0 sin(@, +6,) (12)
where 6, represents the angle between the robot

2 2
x ced + y eed )
represents the distance from the robot to the center of the

and the active camera, and 7, (=

camera.
2.3. Inverse kinematics for placing the center of

an image to the desired position

In the case of using an active camera, visual
information on the area to be searched can be obtained
through the inverse kinematics. The inverse kinematics
equations that describe the attitude of the actuator used to
place the center of an image onto a desired position, can
be derived from Eq.’s (2)-(4) as follows:

— L, + B - (12+r,,)(12—rd)( 1 ](13)
ad—co -
sin(4,)

@)

b= tan—l(y_d] (14)

Xd

where @, and f, are the attitude of the camera,
(x,,y,) represents the desired position of the camera,
and r, is X} +y) .

Table 1 shows parameters for the camera system, which
are used in the Eq.'s (13) and (14)

Table 1 Parameters for the active camera system.

A 40 cm I 7.5 cm

A 4cm - -
P, 320 pixel P, 240 pixel
0, 50° 6, 40°

3. Trajectory estimation of a moving object

3.1. Modeling of a moving object

When the velocity and acceleration of the target
object can be estimated, the next target position
(f'x, T ). can be predicted as follows 2

Tresi =T+ V6t + %2,5»‘2 (15)

~ ~ = 1~
Tya=Ty+V,0t+ EA.V&Z (16)

where Ot is the sampling time, and (., T»), 7., 7)
and (4, 4,) are the current Cartesian coordinate
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estimates of the target position, velocity and acceleration
respectively.

In the X-Y coordinates, movement of the object can
be decomposed into the linear velocity element and the
angular velocity element, as follows *:

OXy 5,4 = VyOtcos(6, + %%5’) an
. 1 :
SYirori = VOt sin(6; +Ewk5t) (18)
SOks 5k = 04Ot (19
MVevap =S 20
00, 546 = 0 @1

where v, and w, are the variations of linear velocity and
angular velocities w.r.t the target object moving on the x-
y coordinates, and £, and & are the variations of linear
velocity and angular velocity considering the moving
object as random movement respectively.

From (17)-(21), we can obtain the state transition matrix,
as follows:

X, = (Dk.k—lxk—l W 22)
Z,=Hx, +v,

where
x, 1 0 0 &tcos(b,) —%vk_lﬁtzsin(g,‘_l)
xk = N Q =
;* R0 1 0 srsingg,) %v,_lsﬁcos(ek,,)
v‘ 00 1 0 5t
* 000 1 0
D 000 0 1

zk= X ’Hk= 10000 s Ve = Y« ,and
Vs 01000 1,

Wi=[000¢ T

Notice that ®, is the state transition matrix, w, is
is the
measurement vector, H, represents the relationship

the vector representing process noise, Z,

between the measurement and the state vector, and 7,
and y, are x and y directional measurement errors
respectively.

3.2. State estimation of a moving object based on
a Kalman filter

30

Input data such as image information include
uncertainties and noises generated during the data
capturing and processing steps. And the state transition
of a moving object also includes irregular components.
Therefore as a robust state estimator against these
irregularities, a Kalman filter was adopted to form a state
observer ', The Kalman filter
estimation error by modifying the state transition model
based on the error between the estimated vectors and the

minimizes the

measured vectors with an appropriate filer gain. The state
vector, which consists of position on the x-y plane,
linear/angular velocities, and linear/angular accelerations
can be estimated using the measured vectors representing
the position of a moving object on the image plane.

The covariance matrix of estimated error must be
calculated to determine the filter gain. The projected
estimate of the covariance matrix of estimated error is
represented as

T
I)k, = (Dk,k—ch—l(Dk,k—l +0 (23)
where P, is a zero-mean covariance matrix representing
the prediction error, @, represents system noise, F,_ is
an error covariance matrix for the previous step, and

O, represents other measurement and computational
€rrors .

The optimal filter gain K, that minimizes the errors
associated with the updated estimate is

_prgT rryT -1
Ki=FH [H.PH, +R,] (24)
where H, is the observation matrix and R, is the zero-
mean covariance matrix of the measurement noise.
The estimate of the state vector x¢ from the measurement

Z, is expressed as

=0, x +K,[Z, -H®, ,  xi1]. 25)
Therefore, X is updated based on the new values
provided by Z, . The error covariance matrix that will be
used for the prediction, P, , can be updated as follows 9,

!

B =F - K H P (26)
After the current time is updated to k+1, a new
estimation can be provided using Eqgs. (23) to (26).
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Fig. 4(a) represents a real and an estimated trajectories of
a moving object, while Fig. 4(b) represents the
estimation |error] when the trajectory was estimated by
the Kalman filter.

To incorporate the measurement noise which is
empirically assumed to be zero-mean, Gaussian random
noise with the variance of 2, the linear and angular
velocities of the object were set as follows:

v, =15*%(sin(0.02*k) +1) + &
o, = 0.7*cos(0.01%k) + &,

[-cm/sec]

27
[ rad/sec] @

where the linear and angular velocities (&, , £, ) were
assumed to include the Gaussian random noise with the
variance of 3 and 0.1, respectively.
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(b) Estimation error along the trajectory.
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(c) State estimations, &, ,v, , and @, , using a Kalman

filter.
Fig. 4 State estimations using a Kalman filter.

Fig. 4(a),(b) shows that the trajectory of a moving
object, the estimation error and estimation of x, y
coordinates of an object. And Fig. 4(c) shows the
Kalman filter estimation of the states under a noisy
environment.

3.3. Trajectory estimation of a moving object

The states of a moving object can be estimated if the
initial state and input are given for the state transition
model. Therefore, the states can be estimated for the next
inputs by estimating the linear velocity and angular
velocity of the moving object using the Kalman filter as a
state estimator. From the linear velocity/acceleration and
rotational angular velocity/acceleration data, the next
states can be approximated as the following first order

equations:
Vien =V +aynT (28)
®,,, =@, +anT . 29)

In Fig. 4(c), the result includes possible noise since it is
a dynamically varying system, although it is surpressed
by the Kalman filter. Therefore the least square
estimation method is utilized, which has robust anti-noise
characteristics 2.

E=4"4)" 4"y (30)
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1 -T
where 5 _ V¢ OF , A=1 -2r , and
B :
1 -mT
Vi @l
_| V2 D
Vicm  @rm

From the estimated inputs and using the state
transition model, the trajectory of a moving object can be
estimated as follows:

Xhom = X + i v(h)cos[B(R)IT (31a)
h=0

Fiom = Yo + Y V(R)sin[O()IT (31b)
h=0

v(h) = ve +auhT (32a)

O(h) =By +auhT +%&th2 - (32b)

4. Motion planning for capturing

To capture a moving object, the mobile robot needs
to be controlled by considering the relation between the
position of the mobile robot and the position of the
moving object. Fig. 5 shows the motion planning process
of a mobile robot for capturing a moving object.

Yo(k+ M)

xo(k+4) 4y

xo(k+2)
Yo(k +1)

Yo(k)
Moving
Object

Fig. 5 Estimation of the trajectory for capturing.

3

The mobile robot estimates the position of the
moving object within m sampling time and selects the
shortest distance from its current position to the moving
object, assuming that its location is known a priori. The
localization scheme of the mobile robot using the
information on the moving object, which improves the
accuracy in capturing, is developed in . The target point
of the mobile robot at k-th sampling time is denoted as
;R (k+ M), which is one of the estimated points of the
mobile robot after m sampling time.

xe(k +M,,) = min ||§co(k+M)-£R(k+M)|| 33)

opt

where xz(k+ M) is the position of the mobile robot after
m sampling time, and the mobile robot moves along the
shortest path towards the target point o(k+M).

The position of the moving object in the cartesian
coordinate system is acquired using the relation between
image frames. The linear and angular velocities of the
moving objects are estimated by the state estimator,
Kalman filter.

After estimating the trajectory of the target object,
the optimal trajectory and motion planning of the mobile
robot are decided in order to capture the target object in
the shortest time. The following figure shows the overall
structure of mobile robot control for capturing a target
object.

5. Simulations and Experiments

To demonstrate and illustrate the proposed method,
we present an example. It is assumed that the velocity
limit of a mobile robot is 30 cm/sec and the camera is
installed on top of the mobile robot. The initial locations
of the mobile robot and the moving object are (-50, -50)
and (-250, 300) in cm with respect to the reference frame,
respectively. The velocity and angular velocity of
moving object are as follows:

(39
(33

v, =30(cos(0.01k)+ 1)+ &, [cm/sec]
@, = 0.7sin(0.03k + %)+ &, [rad /sec]’

The forward direction and rotational angular
velocity of the moving object are Gaussian random
variable with variances of 2 and 0.1, respectively, which
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are obtained experimentally.

Fig. 6(a) presents the trajectory of a moving object
and the mobile robot trying to capture the object by
estimating the trajectory. Fig. 6(b) represents the distance
between the mobile robot and the moving object, the
error between the estimated velocity and the real velocity,
and the error between the estimated angular velocity and
the real angular velocity respectively. Although the error
of the estimated velocities is high at first, they converge
to zero immediately.
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(b) Estimated state.

Fig. 6 Results of simulation.

3

Experiments that include the proposed algorithm are
applied to a mobile robot named ZIRO developed in the

laboratory >, as shown in Fig. 7.

Fig. 7. Components of ZIRO.

ZIRO, the mobile robot used for this experiment,
recognizes an object in the 3D space, approaches to the
object to capture, and carries it to a goal position. For
this purpose, ZIRO has a 2 d.o.f active camera to search
and track an object and a gripper to capture the object.
The two-wheel differential driving mechanism supports
flexible motion on a floor following the commands based
on the image captured by the 2 d.o.f pan/tilt camera.

To control the wheels in real time, a distributed
control system is implemented using a CAN based
network. Three CAN-based controllers are connected to
the network, among which a controller gathers the gyro
sensor data and sends them to the wheel controllers. The
CAN network is connected to a higher-level ISA bus
which connects the 2 d.o.f pan/tilt camera controllers to a
main controller (a Pentium PC board). Every 100msec,
the position of an object in 3D space is calculated using
the posture of the camera and the object position on the
image frame to plan the trajectory of the mobile robot.
The planned trajectory commands was sent to the wheel
controllers that uses PID algorithm to control the angle
every 10 msec.

Experiment was performed to show the tracking and
capturing a mobile object. Fig. 8 shows the experimental
results for tracking and capturing a moving object that is
an 8x6[cm] red-colored mouse and has two wheels with
random velocities in the range of 25-35[cm/sec]. First,
ZIRO detects the moving object using an active camera.
When a moving object is detected within view, ZIRO
tracks it following the proposed method. And Fig. 8
illustrates that the mobile robot captured a ball, moved to
the target point and put the ball on the target point. The
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minimum path was estimated using the trajectories of the
mobile robot and the object, while the mobile was
tracking the object. When the object is coming into the
gripper, it grasps the object rigidly with the aid of the
touch sensors.

Fig. 8 Experiments for capturing a ball.

6. Conclusions

This paper proposes a method of tracking and
capturing a moving object using an active camera

mounted on a mobile robot. It describes a control scheme .

used for real-time tracking and capturing of objecting
moving in front of the mobile robot. The new proposed
scheme controls the system to maintain the position and
distance to the moving object and to generate the shortest
trajectory to the object.

The effectiveness of the proposed method is
demonstrated by the simulation and experiments, and is
verified through the following procedure:

1. Position estimation of a target object based on the
kinematic relationship of consecutive image frames.

2. Movement estimation of the target object using a
Kalman filter for tracking.

3. Motion planning of a mobile robot to capture the
target object based on its estimated trajectory within
the shortest time.

The approach enables real time tracking and
capturing operations since it extracts the distance
information from a single image frame and estimates the

34

next motion using the Kalman filter which provides a
closed form solution.

References

1. K. Daniilidis, C. Krauss, "Real-Time Tracking of
Moving Objects with an Active Camera," Real-time
imaging, Academic Press Limited, 1998.

2. Russell F. Berg, "Estimation and Prediction for
Maneuvering Target Trajectories," IEEE Trans. on
Automatic Control, Vol. AC-38, No.3, 1983.

3. Steven M. Lavalle and Rajeer Sharma, "On Motion
Planning in Changing Partially Predictable Environ-
ments," The Int'l, Journal of Robotics Research, Vol.
16, No. 6, pp. 705-805, 1997.

4. H. W. Sorenson, "Kalman Filtering Techniques,”
Advances in Control Systems
Applications, Vol. 3, pp.219-292, 1996.

5. Park, J. W, Lee, J. M., "Robust Map Building and
Navigation for a Mobile Robot using Active
Camera," Proc. of ICMT, pp.99-104, 1999.

6. R. A. Brooks, "A Robust Layered Control System for
a Mobile Robot,” IEEE Journal of Robotics and
Automation, Vol. RA-2, No. 1, pp.14-23, 1986.

7. John J. Leonard and Hugh F. Durrant-Whyte,
"Mobile Robot Localization by Tracking Geometric

Theory and

Beacons," IEEE Trans. Robotics and Automation,
Vol. 7, No.3, pp. 376~382, 1991.

8. J. David, Kreigman et al, "Stereco vision and
navigation in buildings for mobile robots," IEEE
Trans. Robotics and Automation, Vol. 5, No. 6, pp.
792~803, 1989.

9. R. E. Kalman, "A New Approach to Linear Filtering

and Prediction Problems,” Trans, ASME, J. Basic

Eng, Series 82D, pp. 35-45, 1960.

Han, M. Y., Kim, B. K., Kim, K. H. and Lee, Jang M.

"Active Calibration of the Robot/Camera Pose Using

the Circular Objects,

Automation and Systems Engineering, Vol. 5, No. 3,

pp- 314-323, 1999.

11. Dinesh Nair and Jagdishkumar K. Aggarwal,

"Moving Obstacle Detection From a Navigation

Robot," IEEE Trans. Robotics and Automation, Vol.

14, No. 3, pp. 404~416, 1989.

Anthony LALLET and Simon LACROIX, " Toward

Real-Time 2D Localization in Outdoor Environ-

10.

Transactions on Control,

12.



T S. Jin and J. M. Lee : International Journal of Precision Engineering and Manufacturing Vol. 5, No. 1.

13.

15.

16.

17.

18.

19.

20.

21.

ments," Proceedings of the 1998 IEEE International
Conference on Robotics & Automation, pp. 2827-
2832, 1998.

A. Adam, E. Rivlin, and I. Shimshoni, "Computing
the Sensory Uncertainty Field of a Vision-based
Localization Sensor,” Proceedings of the 2000 IEEE
International Conference on Robotics & Automation,
pp. 2993-2999, 2000.

. Kim, B. H., Roh, D. K, Lee, J. M. Lee, M. H., Son,

K. Lee, M. C, Choi, J. W. and Han, S. H.
"Localization of a Mobile Robot using Images of a
Moving Target," Proceedings of the 2001 IEEE
International Conference on Robotics & Automation,
2001.

Vincenzo Caglioti, "An
Minimum Uncertainty Sensing in Recognition and
Localization Part II-A Case Study on Directional
Distance Measurements," IEEE Trans. On Systems,
Man, and Cybemetics, Vol. 31, No. 2, pp. 197-214,
2001.

Clark F. Olson, "Probabilistic Self-Localization for
Mobile Robots,” IEEE Trans. On Robotics and
Automation, Vol. 16, No. 1, pp. 55-66, 2000.
Hongjun Zhou and Shigeyuki Sakane, "Sensor
Planning for Mobile Robot Localization Based on

Entropic Criterion for

Probabilistic Inference Using Bayesian Network,"
of the 4th IEEE
Symposium on Assembly and Task Planning, pp. 7-
12, 2001.

Muriel Selsis, Christophe Vieren, and Francois
Cabestaing, 3D
Localization of Moving Objects by Active Contour
Models," Proceedings of the 95 IEEE International
Symposium on Intelligent Vehicles, pp. 96-100, 1995.

Proceedings International

"Automatic  Tracking and

Howie Choset and Keiji Nagatani, "Topological
Simultaneous Localization and Mapping (SLAM):
Localization Without Explicit
Localization,” IEEE Trans. On Robotics
Automation, Vol. 17, No. 2, 2001.

Sanisa Segvic and Slobodan Ribaric, "Determining
the Absolute Orientation in a Corridor Using

Toward Exact
and

Projective Geometry and Active Vision," IEEE Trans.
On Industrial Electronics, Vol. 48, No. 3, pp. 696-710,
2001.

E. Grosso, M. Tistarelli, “Active/Dynamic sterco
vision,” IEEE Trans. On Pattern Analysis and

35

22.

23.

24.

Machine Intelligence, Vol. 7, pp. 868-879, 1995.

R. G. Hutchins and LTJG J. P. C. Roque, "Filtering
and Control of an Autonomous Underwater Vehicle
for both Target Intercept and Docking," Proceedings
of the 4th IEEE International Conference on Control
Applications, pp. 1162-1163, 1995.

Jang, J., Sun, C. and E. Mizutani, Neuro-Fuzzy and
Soft Computing, Prentice-Hall, 1997.

Joung, 1. S., Cho, H. S. "Self-localization for Mobile
robot navigation using an Active Omni-directional
Range Sensor,” Journal of the Korean Society of
Precision Engineering, Vol. 16, No. 1, 1999.



