• Title/Summary/Keyword: Moving Boundary

Search Result 575, Processing Time 0.022 seconds

On the Hydrodynamic Forces Acting on a Partially Submerged Bag

  • Lee, Gyeong-Joong
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.2 no.1
    • /
    • pp.140-155
    • /
    • 1994
  • The hydrodynamic problem is treated here when a pressurized bag is submerged partially in the water and the end points of it oscillate. SES(Surface Effect Ship) has a bag filled with pressurized air at the stern in order to prevent the air leakage, and the pitch motion of SES is largely affected by the hydrodynamic force of the bag. The shape of a bag can be determined with the pressure difference between inside and outside. Once the hydrodynamic pressure is given, the shape of a bag can be obtained, however in order to calculate the hydrodynamic pressure we should know the shape change of the bag, and vice versa. Therefore the type of boundary condition on the surface of a bag is a moving boundary like a free surface boundary. The present paper describes the formulation of this problem and treats a linearized problem. The computations of the radiation problem for an oscillating bag are shown in comparison with the case that the bag is treated as a rigid body. The hydrodynamic forces are calculated for various values of the pressure inside the bag and the submerged depth.

  • PDF

A VIRTUAL BOUNDARY METHOD FOR SIMULATION OF FLOW OVER SWIMMING STRINGS

  • Huang, Wei-Xi;Sung, Hyung-Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.66-69
    • /
    • 2006
  • In the present study, we propose a virtual boundary method for simulation of massive inextensible flexible strings immersed in viscous fluid flow. The fluid motion is governed by the Navier-Stokes equations and a momentum forcing is added in order to bring the fluid to move at the same velocity with the immersed surface. A massive inextensible flexible string model is described by another set of equations with an additional momentum forcing which is a result of the fluid viscosity and the pressure difference across the string. The momentum forcing is calculated by a feedback loop. Simulations of several numerical examples are carried out, inlcuding a hanging string which starts moving under gravity without ambient fluid, a string swimming within a uniform flow and a uniform flow over two side-by side strings. The numerical results agree well with the theoretical analysis and previous experimental observations. Preliminary results of a swimming elongated fishlike body will also be presented.

  • PDF

Time-Domain Analysis of Nonlinear Wave-Making Phenomena by a Submerged Sphere Oscillating with Large Amplitude (대진폭 조화 운동을 하는 잠수구에 의한 비선형 조파현상의 시간영역 해석)

  • Kim, Yong-Jig;Ha, Young-Rok
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.382-385
    • /
    • 2006
  • A high-order spectral/boundary-element method is newly adapted as an efficient numerical tool. In this method, the velocity potential is expressed as the sum of surface potential and body potential. Then, surface potential is solved fly using the high-order spectral method and body potential is solved fly using the high-order boundary element method. Through the combination of these two methods, the wave-making problems fly a submerged sphere moving with the large amplitude oscillation are solved in time-domain. With the example calculations, nonlinear effects on free-surface profiles and hydrodynamic forces are shown and discussed.

  • PDF

Numerical analysis in oscillating flow considering orientation of porous media regenerator (다공성 재생기의 방향성을 고려한 왕복유동 수치해석)

  • Yang, Mun-Heum;Park, Sang-Jin;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1668-1678
    • /
    • 1997
  • Numerical analyses were performed to investigate the characteristics of regenerator in oscillating flow by using moving boundary method and Darcy model. In this work, periodic adiabatic boundary condition was suggested as the boundary condition of adiabatic part so that the effects of the thermal inertia of the wall could be considered. In carrying out numerical analyses, two models were applied and compared. One called isotropic model has the same thermal conductivity in radial and axial directions within a porous media. The other called aeolotropic model has different conductivity in each directions. Isotropic model could not show the advantage of energy reduction which needs to maintain constant wall temperature difference between heater and cooler. But aeolotropic model could simulate the reduction of energy consumption.

The Effects of Natural Convection on Macrosegregation during Alloy Solidification (합금 응고과정에서 자연대류가 거시편석에 미치는 영향)

  • Lee, Kyun-Ho;Mok, Jin-Ho;Lee, Jin-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.37-44
    • /
    • 2000
  • Numerical investigation is made to study the effects of natural convection on the formation of macrosegregation of a Pb-Sn alloy solidification process in a 2-D confined rectangle mold. The governing equations are calculated using previous continuum models with SIMPLE algorithm doring the solidification process. In addition. to track the solid-liquid interface with time variations. the moving boundary condition Is adopted and irregular interface shapes are treated with Boundary-Fitted Coordinate system. As the temperature reduce from the liquidus to the solidus, the liquid concentration of Sn. the lighter constituent, increases. Then the buoyancy-driven flow due to temperature and liquid composition gradients, called thermosolutal convection or double diffusion, occurs in the mushy region and forms the complicated macrosegregation maps. Related to this phnomena, effects on the macrosegregation formation depending on the cooling condition and gravity values are described.

  • PDF

Acoustic Analysis of Axial Fan using BEM based on Kirchhoff Surface (Kirchhoff Surface 변화에 따른 송풍기 소음의 BEM 해석)

  • 박용민;이승배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.772-777
    • /
    • 2002
  • A BEM is highly efficient method in the sense of economic computation. However, boundary integration is not easy for the complex and moving surface e.g. in a rotating blade. Thus, Kirchhoff surface is designed in an effort to overcome the difficulty resulting from complex boundary conditions. A Kirchhoff surface is a fictitious surface which envelopes acoustic sources of main concern. Acoustic sources may be distributed on each Kirchhoff surface element depending on its acoustic characteristics. In this study, an axial fan is assumed to have loading noise as a dominant source. Dipole sources can be computed based on the FW-H equation. Acoustic field is then computed by changing Kirchhoff surfaces on which near-field is implemented, to analyze the effect of Kirchhoff surface on it.

  • PDF

A Study on Stress Distribution Using Boundary Element Analysis Due to Surface Coating in Sliding Contact (경계요소법을 이용한 미끄럼 접촉을 받고 있는 코팅층의 응력분포에 관한 연구)

  • Lee, Gang-Yong;Gang, Jin-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.304-311
    • /
    • 2001
  • The present work examines the influence of surface coating on the temperature and the thermo-mechanical stress field produced by friction due to sliding contact. A two-dimensional transient model of a layered medium submitted to a moving heat flux is prsented. A solution technique based on the boundary element method employing the multiregion technique is utilized. Results are presented showing the influence of coating thickness, thermal properties, Peclet number, and mechanical properties. It has been shown that the mechanical properties and thickness of coating have a significant influence on the stress field, even for low temperature increase. The effects of the ratios of shear modulus become more important for low temperature increase than the effects of the ratios of other mechanical properties.

The Safety Assessment to Breakwater Systems by Placing Submarine Rectangular Trench (해저 Trench 설치에 의한 방파제 시스템의 안전성 평가)

  • Kim, Sung-Duk
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.1
    • /
    • pp.37-42
    • /
    • 2009
  • The present study is to estimate the effect of wave height affecting at the front face of breakwater systems, when a submarine trench is dredged in the distant offshore from outer breakwater. The wave diffraction field, which is important hydraulic factor in the ocean, is considered to be two dimensional(2D) plane and the configuration of the submarine trench on the sea bed designated by single horizontal long-rectangular system. The numerical simulation is performed by using Green function based on the boundary integral equation and meshed at moving boundary conditions. The results of present numerical simulations are illustrated by applying the normal incidence. It is shown that the ratios of wave height reduction at the front face of breakwater systems are approximately 20% by the effect of placing long trench on the sea bed. This study can effectively be utilized for safety assessment to various breakwater systems in the ocean field.

Prediction of Sound Field Inside Duct with Moving Medium by using one Dimensional Green's function (평균 유동을 고려한 1차원 그린 함수를 이용한 덕트 내부의 음장 예측 방법)

  • Jeon, Jong-Hoon;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.915-918
    • /
    • 2005
  • Acoustic holography uses Kirchhoff·Helmholtz integral equation and Green's function which satisfies Dirichlet boundary condition Applications of acoustic holography have been taken to the sound field neglecting the effect of flow. The uniform flow, however, changes sound field and the governing equation, Green's function and so on. Thus the conventional method of acoustic holography should be changed. In this research, one possibility to apply acoustic holography to the sound field with uniform flow is introduced through checking for the plane wave in a duct. Change of Green's function due to uniform flow and one method to derive modified form of Kirchhoff·Heimholtz integral is suggested for 1-dimensional sound field. Derivation results show that using Green's function satisfying Dirichlet boundary condition, we can predict sound pressure in a duct using boundary value.

  • PDF

Verification of Stress Analysis on the Bracket of Bus Bear Chassis

  • Kim, Gyu Sung
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.266-272
    • /
    • 2022
  • Structural stress analysis is performed to confirm the safety of the structures before the construction, and stress analysis is performed to evaluate the safety of various components before the ship or vehicle corresponding to the moving structure is manufactured. In this case, the stress analysis work is performed using the stress analysis software of each company. The results of the stress analysis based on the boundary conditions of the applied loads are analyzed to evaluate the safety of the structure, but the results are difficult to verify because most of the stress analysis software possessed by each company is one. In this paper, we were performed the stress analysis of the bracket applied to the bare chassis of the 30-passenger bus under development is performed by HYPERMESH. In order to verify this, the stress analysis is performed using ANSA/META under the same boundary condition. The stress analysis results of ANSA/META and HYPERMESH showed that they had the same stress distribution and the maximum stress occurred at the same location. Taken together, the results of stress analysis using HYPERMESH were reliable.