• 제목/요약/키워드: Moving Accuracy

검색결과 894건 처리시간 0.028초

확장된 이동최소제곱 유한차분법을 이용한 이동경계문제의 해석 (Analysis of Moving Boundary Problem Using Extended Moving Least Squares Finite Difference Method)

  • 윤영철;김도완
    • 한국전산구조공학회논문집
    • /
    • 제22권4호
    • /
    • pp.315-322
    • /
    • 2009
  • 본 논문은 확장된 이동최소제곱 유한차분법을 이용하여 1차원 Stefan 문제를 해석할 수 있는 새로운 수치기법이 제시한다. 이동하는 계면경계의 자유로운 수치적인 묘사를 위해 요소망이나 그리드 없이 절점만을 사용하는 이동최소제곱 유한차분법을 도입하고, 계면경계의 특이성을 모형화하기 위해 Taylor 다항식에 쐐기함수를 도입하여 확장했다. 지배방정식의 차분은 안정성을 보장해 주는 음해법(implicit method)을 이용한다. 이동경계를 포함한 반무한 융해문제, 실린더 형상의 고체화 문제의 수치해석을 통해 확장된 이동최소제곱 유한차분법이 높은 정확성과 효율성을 갖는 것을 보였다.

Structural damage and force identification under moving load

  • Zhu, Hongping;Mao, Ling;Weng, Shun;Xia, Yong
    • Structural Engineering and Mechanics
    • /
    • 제53권2호
    • /
    • pp.261-276
    • /
    • 2015
  • Structural damage and moving load identification are the two aspects of structural system identification. However, they universally coexist in the damaged structures subject to unknown moving load. This paper proposed a dynamic response sensitivity-based model updating method to simultaneously identify the structural damage and moving force. The moving force which is equivalent as the nodal force of the structure can be expressed as a series of orthogonal polynomial. Based on the system Markov parameters by the state space method, the dynamic response and the dynamic response derivatives with respect to the force parameters and elemental variations are analytically derived. Afterwards, the damage and force parameters are obtained by minimizing the difference between measured and analytical response in the sensitivity-based updating procedure. A numerical example for a simply supported beam under the moving load is employed to verify the accuracy of the proposed method.

Cogging Force Verification of the Back-yoke Length of a Moving-coil-type Slotless Linear Synchronous Motor

  • Kim, Yong-Jae;Jung, Sang-Yong
    • Journal of Magnetics
    • /
    • 제14권1호
    • /
    • pp.47-51
    • /
    • 2009
  • The coreless linear synchronous motor (coreless LSM) has been widely used as a driving source of semiconductor production processes for machine speeding up, positioning accuracy and simple maintenance. However, this coreless LSM suffers the disadvantage of decreased thrust force created by the leakage of magnetic flux. With the goal of increasing the generated thrust force and decreasing the cogging force, the slot of the core part was removed and a moving-coil-type slotless LSM (moving-coil-type slotless LSM) is proposed in this paper. Although this moving-coil-type slotless LSM with a back-yoke at the primary side demonstrated an increase in the generated thrust force, it remained capable of generating the cogging force when the primary side was moved due to the position between the permanent magnet and the back-yoke. Therefore, we attempted to decrease the cogging force of the moving-coil-type slotless LSM. We found that the back-yoke length at the primary side needs to be made $0.5{\tau}$ longer than the integral multiple of the magnetic pole pitch in order to decrease the cogging force created by the moving-coil-type slotless LSM.

Wi-Fi 신호를 사용하지 않고 보행자 궤적과 건물내 지도 특성만을 이용한 스마트폰 실내 위치 측정 시스템 (Step Trajectory/Indoor Map Feature-based Smartphone Indoor Positioning System without Using Wi-Fi Signals)

  • 라동준;최권휴
    • 대한임베디드공학회논문지
    • /
    • 제9권6호
    • /
    • pp.323-334
    • /
    • 2014
  • In this paper, we proposed indoor positioning system with improved accuracy. The proposed indoor location measurement system is based pedestrian location measurement method that use the embedded sensor of smartphone. So, we do not need wireless external resources, such as GPS or WiFi signals. The conventional methods measure indoor location by generating a movement route of pedestrian by step and direction recognition. In this paper, to correct the direction sensor error, we use the common feature of the normal indoor floor map that the indoor path is lattice-structured. And we quantize moving directions depending on the direction of indoor path. In addition, we propose moving direction measuring method using geomagnetic sensor and gyro sensor to improve the accuracy. Also, the proposed step detection method uses angle and accelerometer sensors. The proposed step detection method is not affected by the posture of the smartphone. Direction errors caused by direction sensor error is corrected due to proposed moving direction measuring method. The proposed location error correction method corrects location error caused by step detection error without the need for external wireless signal resources.

영상을 이용한 차량의 주행 위치 측정 시스템 (A System to Recognize Position of Moving Vehicle based on Images)

  • 김진덕;문혜영
    • 한국정보통신학회논문지
    • /
    • 제15권12호
    • /
    • pp.2619-2625
    • /
    • 2011
  • 최근 차량 항법 장치에서 널리 사용되고 있는 GPS 기술은 다음과 같은 두 가지 문제점을 가지고 있다. 첫째, 빌딩숲, 터널 등과 같은 도시 계곡(Urban Canyon) 지역에서는 GPS 신호 수신이 불가능하다. 둘째, GPS 신호를 이용한 측위는 항상 내재적인 위치 오차율 갖고 있다. 전자는 기존의 많은 연구를 통해 해결되었지만, 후자는 여전히 병행 도로와 같은 지역에서는 부정확한 위치 정보를 운전자에게 제공한다. 이 논문에서는 차량 네트워크와 기타 장비로부터 획득한 영상을 이용하여 차량의 주행 경로를 인식하는 시스템을 제안한다. 제안한 시스템은 실시간 영상 매칭 알고리즘을 이용한다. 또한 영상 매칭 정확도를 높이기 위한 기법 또한 제안한다. 이 논문에서 제안한 시스템은 실시간 주행 실험을 통해 원활하게 동작함을 보였다. 또한 매칭 정확도가 향상됨을 보여주었다.

Breathing Measurement and Sleep Apnea Detection Experiment and Analysis using Piezoelectric Sensor

  • Cho, Seokhyang;Cho, Seung-Ho
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권11호
    • /
    • pp.17-23
    • /
    • 2017
  • In this paper, we implemented a respiration measurement system consisting of piezoelectric sensor, respiration signal processing device, and a viewer on a notebook. We tried an experiment for measuring respiration and detecting sleep apnea syndrome when a subject lay on a bed. We applied the respiration measurement algorithm to sensor data obtained from four subjects. In order to get a good graph shape, data manipulation methods such as moving averages and maximum values were applied. The window size for moving average was chosen as N=70, and the threshold value for each subject was customized. In this case, the proposed system showed 96.0% accuracy. When the maximum value among 90 data was applied instead of moving average, our system achieved 95.1% accuracy. In an experiment for detecting sleep apnea syndrome, the system showed that sleep apnea occurred correctly and calculated the average interval of sleep apnea. While infants or the elderly as well as patients with sleep apnea syndrome are lying down on a bed, our results are also expected to be able to cope with some accidental emergency situation by observing their respiration and detecting sleep apnea.

일반적인 IMA과정에 대한 지수평활 최적성의 확장 (An Extension of the Optimality of Exponential Smoothing to Integrated Moving Average Process)

  • 박해철;박성주
    • 한국국방경영분석학회지
    • /
    • 제8권1호
    • /
    • pp.99-107
    • /
    • 1982
  • This paper is concerned with the optimality of exponential smoothing applied to the general IMA process with different moving average and differencing orders. Numerical experiments were performed for IMA(m,n) process with various combinations of m and n, and the corresponding forecast errors were compared. Results show that the higher differencing order is more critical to the optimality of exponential smoothing, i.e., the IMA process with the higher moving average order, forecasted by exponential smoothing, has comparatively smaller forecast error. If the difference between the differencing order and the moving average order becomes larger, the accuracy of forecast by exponential smoothing declines gradually.

  • PDF

이동하는 물체 주위의 압축성 유동에 대한 가상경계법 (IMMERSED BOUNDARY METHOD FOR COMPRESSIBLE VISCOUS FLOW AROUND MOVING BODIES)

  • 조용
    • 한국전산유체공학회지
    • /
    • 제13권3호
    • /
    • pp.35-43
    • /
    • 2008
  • A methodology for the simulation of compressible high Reynolds number flow over rigid and moving bodies on a structured Cartesian grid is described in this paper. The approach is based on a modified version of the Brinkman Penalization method. To avoid oscillations in the vicinity of the body and to simulate shcok-containing flows, a Weighted Essentially Non-Oscillatory scheme is used to discretize the spatial flux derivatives. For high Reynolds number viscous flow, two turbulence models of the two-equation Menter's SST URANS model and a two-equation Detached Eddy Simulation are implemented. Some simple flow examples are given to assess the accuracy of the technique. Finally, a moving grid capability is demonstrated.

A consistent FEM-Vlasov model for laminated orthotropic beams subjected to moving load

  • Ozgan, Korhan
    • Structural Engineering and Mechanics
    • /
    • 제64권1호
    • /
    • pp.23-31
    • /
    • 2017
  • In the study, dynamic behavior of laminated orthotropic beams on elastic foundation is investigated. Consistent model presented here combines the finite element solution of the system with SAP2000 software and the calculation of soil parameters with MATLAB software using Modified Vlasov Model type elastic foundation. For this purpose, a computing tool is coded in MATLAB which employs Open Application Programming Interface (OAPI) feature of SAP2000 to provide two-way data flow during execution. Firstly, an example is taken from the literature to demonstrate the accuracy of the consistent FEM-Vlasov Model. Subsequently, the effects of boundary conditions, subsoil depth, elasticity modulus of subsoil, slenderness ratio, velocity of moving load and lamination scheme on the behavior of laminated orthotropic beams on elastic foundation are investigated on a new numerical example. It can be concluded that it is really convenient to use OAPI feature of SAP2000 to model this complex behavior of laminated orthotropic beams on elastic foundation under moving load.

Dynamic responses of laminated beams under a moving load in thermal environment

  • Akbas, Seref D.
    • Steel and Composite Structures
    • /
    • 제35권6호
    • /
    • pp.729-737
    • /
    • 2020
  • The goal of this study is to investigate dynamic responses of laminated composite beams under a moving load with thermal effects. The governing equations of problem are derived by using the Lagrange procedure. The transverse-shear strain and rotary inertia are considered within the Timoshenko beam theory. The material properties of laminas are considered as the temperature dependent physical property. The differential equations of the problem are solved by the Ritz method. The solution step of dynamic problem, the Newmark average acceleration method is used in the time history. A compassion study is performed for accuracy of used formulations and method. In the numerical results, the effects of velocity of moving load, temperature values, the fiber orientation angles and the stacking sequence of laminas on the dynamic responses of the composite laminated beam are investigated.