Browse > Article
http://dx.doi.org/10.12989/scs.2020.35.6.729

Dynamic responses of laminated beams under a moving load in thermal environment  

Akbas, Seref D. (Department of Civil Engineering, Bursa Technical University, Yildirim Campus)
Publication Information
Steel and Composite Structures / v.35, no.6, 2020 , pp. 729-737 More about this Journal
Abstract
The goal of this study is to investigate dynamic responses of laminated composite beams under a moving load with thermal effects. The governing equations of problem are derived by using the Lagrange procedure. The transverse-shear strain and rotary inertia are considered within the Timoshenko beam theory. The material properties of laminas are considered as the temperature dependent physical property. The differential equations of the problem are solved by the Ritz method. The solution step of dynamic problem, the Newmark average acceleration method is used in the time history. A compassion study is performed for accuracy of used formulations and method. In the numerical results, the effects of velocity of moving load, temperature values, the fiber orientation angles and the stacking sequence of laminas on the dynamic responses of the composite laminated beam are investigated.
Keywords
laminated composites; moving load problems; temperature effect; ritz method;
Citations & Related Records
Times Cited By KSCI : 20  (Citation Analysis)
연도 인용수 순위
1 Abdelrahman, A.A., Eltaher, M.A., Kabeel, A.M., Abdraboh, A.M. and Hendy, A.A. (2019), "Free and forced analysis of perforated beams", Steel Compos. Struct., 31(5), 489-502. https://doi.org/10.12989/scs.2019.31.5.489.   DOI
2 Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.   DOI
3 Akbas, S.D. and Kocaturk, T. (2012), "Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading", Struct. Eng. Mech., 44(1), 109-125. https://doi.org/10.12989/sem.2012.44.1.109.   DOI
4 Akbas, S.D. and Kocaturk, T. (2013), "Post-buckling analysis of functionally graded three-dimensional beams under the influence of temperature", J. Therm. Stresses, 36(12), 1233-1254. https://doi.org/10.1080/01495739.2013.788397.   DOI
5 Akbas, S.D. (2014), "Free vibration of axially functionally graded beams in thermal environment", Inte. J. Eng. Appl. Sci.., 6(3), 37-51. https://doi.org/10.24107/ijeas.251224.
6 Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421.   DOI
7 Akbas, S.D. (2017a), "Thermal effects on the vibration of functionally graded deep beams with porosity", Int. J. Appl. Mech., 9(05), 1750076. https://doi.org/10.1142/S1758825117500764.   DOI
8 Akbas, S.D. (2017b), "Nonlinear static analysis of functionally graded porous beams under thermal effect", Coupled Syst. Mech., 6(4), 399-415. https://doi.org/10.12989/csm.2017.6.4.399.   DOI
9 Akbas, S.D. (2018a), "Nonlinear thermal displacements of laminated composite beams", Coupled Syst. Mech., 7(6), 691-705. https://doi.org/10.12989/csm.2018.7.6.691.   DOI
10 Akbas, S.D. (2018b), "Thermal post-buckling analysis of a laminated composite beam", Struct. Eng. Mech.s, 67(4), 337-346. https://doi.org/10.12989/sem.2018.67.4.337.   DOI
11 Chen, Y., Fu, Y., Zhong, J. and Tao, C. (2017), "Nonlinear dynamic responses of fiber-metal laminated beam subjected to moving harmonic loads resting on tensionless elastic foundation", Compos. Part B: Eng., 131, 253-259. https://doi.org/10.1016/j.compositesb.2017.07.051.   DOI
12 Akbas, S.D. (2019b), "Nonlinear static analysis of laminated composite beams under hygro-thermal effect", Struct. Eng. Mech., 72(4), 433-441. https://doi.org/10.12989/sem.2019.72.4.433.   DOI
13 Akbas, S.D. (2019c), "Hygro-thermal nonlinear analysis of a functionally graded beam", J. Appl. Comput. Mech.., 5(2), 477-485. https://doi.org/10.22055/jacm.2018.26819.1360.
14 Akbas, S.D. (2019d), "Hygro-thermal post-buckling analysis of a functionally graded beam", Coupled Syst. Mech., 8(5), 459-471. https://doi.org/10.12989/csm.2019.8.5.459.   DOI
15 Bahmyari, E., Mohebpour, S.R. and Malekzadeh, P. (2014), "Vibration analysis of inclined laminated composite beams under moving distributed masses", Shock Vib., 2014. http://dx.doi.org/10.1155/2014/750916.
16 Bourada, F., Amara, K. and Tounsi, A. (2016), "Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory", Steel Compos. Struct., 21(6), 1287-1306. https://doi.org/10.12989/scs.2016.21.6.1287.   DOI
17 Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.   DOI
18 Ebrahimi, F. and Barati, M.R. (2016), "Electromechanical buckling behavior of smart piezoelectrically actuated higher-order sizedependent graded nanoscale beams in thermal environment", Int. J. Smart Nano Mater., 7(2), 69-90. https://doi.org/10.1080/19475411.2016.1191556.   DOI
19 Akbas, S.D. (2019a), "Hygrothermal post-buckling analysis of laminated composite beams", Int. J. Appl. Mech., 11(01), 1950009. https://doi.org/10.1142/S1758825119500091.   DOI
20 Ebrahimi, F. and Barati, M.R. (2018), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magnetoelectrical field in thermal environment", J. Vib. Control, 24(3), 549-564. https://doi.org/10.1177/1077546316646239.   DOI
21 Ghayesh, M.H. (2018a), "Dynamics of functionally graded viscoelastic microbeams", Int. J. Eng. Sci., 124, 115-131. https://doi.org/10.1016/j.ijengsci.2017.11.004.   DOI
22 Ghayesh, M.H. (2018b), "Nonlinear dynamics of multilayered microplates", J. Comput. Nonlinear Dynam., 13(2), 021006. https://doi.org/10.1115/1.4037596.   DOI
23 Ghayesh, M.H. (2019), "Dynamical analysis of multilayered cantilevers", Commun. Nonlinear Sci. Numer. Simul., 71, 244-253. https://doi.org/10.1016/j.cnsns.2018.08.012.   DOI
24 Hadji, L., Daouadji, T.H., Tounsi, A. and Bedia, E.A. (2014), "A higher order shear deformation theory for static and free vibration of FGM beam", Steel Compos. Struct., 16(5), 507-519. https://doi.org/10.12989/scs.2014.16.5.507.   DOI
25 Karnaukhov, V.G. and Kirichok, I.F. (2005), "Vibrations and dissipative heating of a viscoelastic beam under a moving load", Int. Appl. Mech., 41(1), 49-55. https://doi.org/10.1007/s10778-005-0057-9.   DOI
26 Kocaturk, T. and Akbas, S.D. (2011), "Post-buckling analysis of Timoshenko beams with various boundary conditions under non-uniform thermal loading", Struct. Eng. Mech., 40(3), 347-371. https://doi.org/10.12989/sem.2011.40.3.347.   DOI
27 Kocaturk, T. and Akbas, S.D. (2012), "Post-buckling analysis of Timoshenko beams made of functionally graded material under thermal loading", Struct. Eng. Mech., 41(6), 775-789. https://doi.org/10.12989/sem.2012.41.6.775.   DOI
28 Malekzadeh, P. and Monajjemzadeh, S.M. (2016), "Dynamic response of functionally graded beams in a thermal environment under a moving load", Mech. Adv. Mater. Struct., 23(3), 248-258. https://doi.org/10.1080/15376494.2014.949930.   DOI
29 Li Z.M. and Qiao P. (2015), "Buckling and postbuckling behavior of shear deformable anisotropic laminated beams with initial geometric imperfections subjected to axial compression", Eng. Struct., 85, 277-292. https://doi.org/10.1016/j.engstruct.2014.12.028.   DOI
30 Li, Y. H., Wang, L. and Yang, E.C. (2018), "Nonlinear dynamic responses of an axially moving laminated beam subjected to both blast and thermal loads", Int. J. Nonlinear Mech., 101, 56-67. https://doi.org/10.1016/j.ijnonlinmec.2018.02.007.   DOI
31 Mazur-Sniady, K., Sniady, P. and Zielichowski-Haber, W. (2009), "Dynamic response of micro-periodic composite rods with uncertain parameters under moving random load", J. Sound Vib.n, 320(1-2), 273-288. https://doi.org/10.1016/j.jsv.2008.08.004.   DOI
32 Shen H.S. (2001), "Thermal postbuckling behavior of imperfect shear deformable laminated plates with temperature-dependent properties", Comput. Method. Appl. M., 190, 5377-5390. https://doi.org/10.1016/S0045-7825(01)00172-4.   DOI
33 Tao, C., Fu, Y.M. and Dai, H.L. (2016), "Nonlinear dynamic analysis of fiber metal laminated beams subjected to moving loads in thermal environment", Compos. Struct., 140, 410-416. https://doi.org/10.1016/j.compstruct.2015.12.011.   DOI
34 Vinson J.R. and Sierakowski R.L. (2006), The behavior of Structures Composed of Composite Materials, Springer Science & Business Media, Netherlands.
35 Vosoughi, A.R. and Anjabin, N. (2017), "Dynamic moving load identification of laminated composite beams using a hybrid FE-TMDQ-GAs method", Inverse Problems in Sci. Eng., 25(11), 1639-1652. https://doi.org/10.1080/17415977.2016.1275613.   DOI
36 Wang, Y. and Wu, D. (2016), "Thermal effect on the dynamic response of axially functionally graded beam subjected to a moving harmonic load", Acta Astronautica, 127, 171-181. https://doi.org/10.1016/j.actaastro.2016.05.030.   DOI
37 Yuksel, Y.Z. and Akbas, S.D. (2018), "Free vibration analysis of a cross-ply laminated plate in thermal environment", Int. J. Eng. Appl. Sci.10(3), 176-189. https://doi.org/10.24107/ijeas.456755.