• Title/Summary/Keyword: Movement range

Search Result 1,189, Processing Time 0.033 seconds

Sapflux Measurement Database Using Granier's Heat Dissipation Method and Heat Pulse Method (수액류 측정 데이터베이스: 그래니어(Granier) 센서 열손실탐침법(Heat Dissipation Method)과 열파동법(Heat Pulse Method)을 이용한 수액류 측정)

  • Lee, Minsu;Park, Juhan;Cho, Sungsik;Moon, Minkyu;Ryu, Daun;Lee, Hoontaek;Lee, Hojin;Kim, Sookyung;Kim, Taekyung;Byeon, Siyeon;Jeon, Jihyun;Bhusal, Narayan;Kim, Hyun Seok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.4
    • /
    • pp.327-339
    • /
    • 2020
  • Transpiration is the movement of water into the atmosphere through leaf stomata of plant, and it accounts for more than half of evapotranspiration from the land surface. The measurements of transpiration could be conducted in various ways including eddy covariance and water balance method etc. However, the transpiration measurements of individual trees are necessary to quantify and compare the water use of each species and individual component within stands. For the measurement of the transpiration by individual tree, the thermometric methods such as heat dissipation and heat pulse methods are widely used. However, it is difficult and labor consuming to maintain the transpiration measurements of individual trees in a wide range area and especially for long-term experiment. Therefore, the sharing of sapflow data through database should be useful to promote the studies on transpiration and water balance for large spatial scale. In this paper, we present sap flow database, which have Granier type sap flux data from 18 Korean pine (Pinus koraiensis) since 2011 and 16 (Quercus aliena) since 2013 in Mt.Taehwa Seoul National University forest and 18 needle fir (Abies holophylla), seven (Quercus serrata), three (Carpinus laxiflora and C. cordata each since 2013 in Gwangneung. In addition, the database includes the sapling transpiration of nine species (Prunus sargentii, Larix kaempferii, Quercus accutisima, Pinus densiflora, Fraxinus rhynchophylla, Chamecypans obtuse, P. koraiensis, Betulla platyphylla, A. holophylla, Pinus thunbergii), which were measured using heat pulse method since 2018. We believe this is the first database to share the sapflux data in Rep. of Korea, and we wish our database to be used by other researchers and contribute a variety of researches in this field.

Ecological Study on Poisonous Snake and Investigation of the Venom Characteristics, Snakebiting Frequenty in Korea (한국산 독사의 생태학적 특징 및 독성, 교상빈도에 관한 조사, 연구)

  • Shim, Jae-Han;Son, Young-Jong;Lee, Sang-Seob;Park, Kyung-Seok;Oh, Hee-Bok;Park, Young-Do
    • Korean Journal of Environment and Ecology
    • /
    • v.12 no.1
    • /
    • pp.58-77
    • /
    • 1998
  • Four species(25%) of Viperidae(Agkistrodon brevicaudus, Agkistrodon ussuriensis, Agkistrodon saxatilis) and Cloubridae(Rhabdophis tigrenus tigrenus) were Korean poisonous snake. Copulation season of these species was from July to August. Reproduction mode of genus Agkistrodon species was ovoviviparous but Rhabdophis tigrinus tigrinus was the other pattern of oviparous. Optimal movement temperature range was from 20$\circ $C to 29$\circ $C(March~September). Wjen atmosphere temperature was below 10$\circ $C, at that time they hibernate at the ground, rock bottom, stone wall and embankment around the end of a field. The venom of these snakes consist mainly Hematoxin, Cytolysin, Neurotoxin and Cardiotoxin of poisonous liquids. These material injection to animal cause systemic syndrome such as Dizziness(25.7%), Vomitting(23.1%), Fever(22%), Visual trouble(18%), Headace(17.7%), Dyspnoea(17.6%) and bring about other local syndrome such as Discoloration(54.2%), Bleeding(20.2%), Bullae(10.7%) and Skin ulcer(!0.8%). The annual distribution was appeared to decrease 1972 after 1992 and average snakebiting patients was 25.6 per year, but practically total estimated snakebiting was 2,700 per year. The seasonal distribution was most frequent in August(25%), and mortality was 1.8%(26 per 1,430). The sex ratio was 2:1 and according to age distribution, it was most prevalent at one's fifties(19%). The most frequent place where the accident happened was the field(48.2%) and most predilection site of the body for victim were hand(47.8%) and foot(39.5%), Commonly bite snake were Agkistrodon ussuriensis(27.1%), Agkistrodon brevicaudus(22.6%) and Agkistrodon saxatilis(9.6%) but 40.7% of species could not be identified. Treatment of antivenin patient was 75.9% (1,068/1,407).

  • PDF

Evaluation of the effect of a Position Error of a Customized Si-Bolus Produced using a 3D-Printer: Cervical Cancer Radiation Treatment (3D 프린터를 이용하여 제작한 맞춤형 Si-Bolus의 위치 오차 효과 평가: 자궁경부암 방사선 치료)

  • Seong Pyo Hong;Ji Oh Jeong;Seung Jae Lee;Byung Jin Choi;Chung Mo Kim;Soo Il Jung;Yun Sung Shin
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.35
    • /
    • pp.7-13
    • /
    • 2023
  • Purpose: In this study, we evaluated the effect of using a customized bolus on dose delivery in the treatment plan when cervical cancer protruded out of the body along with the uterus and evaluated reproducibility in patient set-up. Materials & Methods: The treatment plan used the Eclipse Treatment Planning System (Version 15.5.0, Varian, USA) and the treatment machine was VitalBeam (Varian Medical Systems, USA). The radiotherapy technique used 6 MV energy in the AP/PA direction with 3D-CRT. The prescribed dose is 1.8 Gy/fx and the total dose is 50.4 Gy/28 fx. Semiflex TM31010 (PTW, Germany) was used as the ion chamber, and the dose distribution was analyzed and evaluated by comparing the planned and measured dose according to each position movement and the tumor center dose. The first measurement was performed at the center by applying a customized bolus to the phantom, and the measurement was performed while moving in the range of -2 cm to +2 cm in the X, Y, and Z directions from the center assuming a positional error. It was measured at intervals of 0.5 cm, the Y-axis direction was measured up to ±3 cm, and the situation in which Bolus was set-up incorrectly was also measured. The measured doses were compared based on doses corrected to CT Hounsfield Unit (HU) 240 of silicon instead of the phantom's air cavity. Result: The treatment dose distribution was uniform when the customized bolus was used, and there was no significant difference between the prescribed dose and the actual measured value even when positional errors occurred. It was confirmed that the existing sheet-type bolus is difficult to compensate for irregularly shaped tumors protruding outside the body, but customized Bolus is found to be useful in delivering treatment doses uniformly.

  • PDF

Identifying Distribution Areas and Population Sizes for the Conservation of the Endangered Species Odontobutis obscura (멸종위기종 남방동사리의 보전을 위한 상세 분포 지역 및 개체군 크기 파악)

  • Jeong-Hui Kim;Sang-Hyeon Park;Seung-Ho Baek;Chung-Yeol Baek
    • Korean Journal of Ecology and Environment
    • /
    • v.57 no.2
    • /
    • pp.102-110
    • /
    • 2024
  • This study presents a fine scale distribution of the endangered species, Odontobutis obscura, through field surveys and literature reviews. Using the mark-recapture method, the population size in major habitats was determined. Field surveys conducted on 18 streams in Geoje Island revealed that the O. obscura was only found in the main streams and tributaries of the Sanyang, Gucheon, and Buchun Streams, which are part of the Sanyang Stream watershed. The O. obscura exhibited relative abundances ranging from 0.5% to 35.3% at different locations, with certain spots showing higher relative abundances (18.8% to 35.3%), indicating major habitat areas. A review of six literature studies confirmed the presence of the O. obscura, although there were differences in occurrence status depending on the purpose, scope, and duration of the studies. Combining the results of field and literature surveys, it was found that the O. obscura inhabits the main and tributary streams of the Sanyang, Gucheon, and Buchun Streams, from the upper to lower reaches. Currently, the O. obscura population in the Sanyang Stream watershed maintains a stable habitat, but its limited distribution range suggests potential issues such as genetic diversity deficiency in the long term. The population size of the O. obscura was confirmed at two specific locations, with densities of 0.5 to 1.5 individuals per m2. The average movement distance from the release point was 13.1 m, indicating the limited mobility characteristic of ambush predators. Understanding the distribution and population size of endangered species is the first step towards their conservation and protection. Based on this information, further research could significantly contribute to the conservation of the O. obscura.

Influence of Oxygen Concentration on the Food Consumption and Growth of Common Carp, Cyprinus carpio L. (잉어 Cyprinus carpio의 먹이 섭취량과 성장에 미치는 용존산소량의 영향)

  • SAIFABADI Jafar;KIM In-Bae
    • Journal of Aquaculture
    • /
    • v.2 no.2
    • /
    • pp.53-90
    • /
    • 1989
  • Feeding proper level of ration matchable with the appetite of fish will enhance production and also prevent waste of food and its consequence, side effects such as pollution of culture medium. To pursue this goal, elaborate studies on dissolved oxygen concentrations- as the major force in inducing appetite and the growth outcome are necessary. The growth of common carp of 67, 200, 400, 600, and 800 gram size groups was studied at oxygen concentrations ranging from 2.0 to 6 mg/$\iota$ in relation to rations from 1 to as many percent of the initial body weight as could be consumed under constant temperature of $25^{\circ}C$. The results from the experiments are summarized as followings; 1. Appetite: The smaller fish exhibited higher degree of appetite than the bigger ones at the same oxygen concentrations. The bigger the fish the less tolerant it was to the lower oxygen thersholds, and the degree of tolerence decreased as ration level increased. 2. Growth : Growth rate (percent per day) increased - unless consumption was suppressed by low oxygen levels- as the ration was increased to maximum. In case of 67 g fish, it reached the highest point of $5.05\%$ / day at $7\%$ ration under 5.0 mg/$\iota$ of oxygen. In case of 200 g fish, the maximum growth rate of $3.75\%$/day appeared at the maximum ration of $6\%$ under 5.5 mg/$\iota$ of oxygen. In 400 g fish, the highest growth of $3.37\%$/day occurred at the maximum ration of $5\%$ and 6.0 mg/$\iota$ of oxygen. In 600 g fish, the highest growth rate of $2.82\%$ /day was at the maximum ration of $4\%$ under 5.5 mg/$\iota$ oxygen. In case of 800g fish, the highest growth rate of $1.95\%$/day was at maximum tested ration of $3\%$ under 5.0 mg/$\iota$ oxygen. 3. Food Conversion Efficiency: Food conversion efficiency ($\%$ dry feed converted into the fish tissue) first increased as the ration was increased, reached maximum at certain food level, then started decreasing with further increase in the ration. The maximum conversion efficiency stood at higher feeding rate for the smaller fish than the larger ones. In case of 67 g fish, the maximum food conversion efficiency was at $4\%$ ration within 3.0-4.0 mg/$\iota$ oxygen. In 200g fish, the maximum efficiency was at $3\%$ ration within 4.0-4.5 mg/$\iota$ oxygen. In 400g fish, the maximum efficiency was at $2\%$ ration within 4.0 - 4.5 mg/$\iota$ oxygen. In 600 and 800g fish, the maximum conversion efficiency shifted to the lowest ration ($1\%$) and lower oxygen ranges. 4. Behaviour: The fish within uncomfortably low oxygen levels exhibited suppressed appetite and movements and were observed to pass feces quicker and in larger quantity than the ones in normal condition; in untolerably low oxygen the fish were lethargic, vomited, and had their normal skin color changed into pale yellow or grey patches. All these processes contributed to reducing food conversion efficiency. On the other hand, the fish within relatively higher oxygen concentrations exhibited higher degree of movement and their food conversion tended to be depressed when compared with sister groups under corresponding size and ration within relatively low oxyen level. 5. Suitability of Oxygen Ranges to Rations: The oxygen level of 2.0- 2.5 mg/$\iota$ was adequate to sustain appetite at $1\%$ ration in all size groups. As the ration was increased higher oxygen was required to sustain the fish appetite and metabolic activity, particularly in larger fish. In 67g fish, the $2\%$ ration was well supported by 2.0-2.5 mg/$\iota$ range; as the ration increased to $5\%$, higher range of 3.0-4.0 mg/$\iota$ brought better appetite and growth; from 5 till $7\%$ (the last tested ration for 67 g fish) oxygen levels over 4.0 mg/$\iota$ could sustain appetite. In 200 g fish, the 2 and $3\%$ rations brought the best growth and conversion rates at 3.5-4.5 mg/$\iota$ oxygen level; from 3 till $6\%$ (the last tested ration at 200 g fish) oxyge groups over 4.5 mg/$\iota$ were matchable with animal's appetite. In 400, 600, and 800 g fish, all the rations above $2\%$ had to be generally supported with oxygen levels above 4.5 mg/$\iota$.

  • PDF

Effects of climate change on biodiversity and measures for them (생물다양성에 대한 기후변화의 영향과 그 대책)

  • An, Ji Hong;Lim, Chi Hong;Jung, Song Hie;Kim, A Reum;Lee, Chang Seok
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.474-480
    • /
    • 2016
  • In this study, formation background of biodiversity and its changes in the process of geologic history, and effects of climate change on biodiversity and human were discussed and the alternatives to reduce the effects of climate change were suggested. Biodiversity is 'the variety of life' and refers collectively to variation at all levels of biological organization. That is, biodiversity encompasses the genes, species and ecosystems and their interactions. It provides the basis for ecosystems and the services on which all people fundamentally depend. Nevertheless, today, biodiversity is increasingly threatened, usually as the result of human activity. Diverse organisms on earth, which are estimated as 10 to 30 million species, are the result of adaptation and evolution to various environments through long history of four billion years since the birth of life. Countlessly many organisms composing biodiversity have specific characteristics, respectively and are interrelated with each other through diverse relationship. Environment of the earth, on which we live, has also created for long years through extensive relationship and interaction of those organisms. We mankind also live through interrelationship with the other organisms as an organism. The man cannot lives without the other organisms around him. Even though so, human beings accelerate mean extinction rate about 1,000 times compared with that of the past for recent several years. We have to conserve biodiversity for plentiful life of our future generation and are responsible for sustainable use of biodiversity. Korea has achieved faster economic growth than any other countries in the world. On the other hand, Korea had hold originally rich biodiversity as it is not only a peninsula country stretched lengthily from north to south but also three sides are surrounded by sea. But they disappeared increasingly in the process of fast economic growth. Korean people have created specific Korean culture by coexistence with nature through a long history of agriculture, forestry, and fishery. But in recent years, the relationship between Korean and nature became far in the processes of introduction of western culture and development of science and technology and specific natural feature born from harmonious combination between nature and culture disappears more and more. Population of Korea is expected to be reduced as contrasted with world population growing continuously. At this time, we need to restore biodiversity damaged in the processes of rapid population growth and economic development in concert with recovery of natural ecosystem due to population decrease. There were grand extinction events of five times since the birth of life on the earth. Modern extinction is very rapid and human activity is major causal factor. In these respects, it is distinguished from the past one. Climate change is real. Biodiversity is very vulnerable to climate change. If organisms did not find a survival method such as 'adaptation through evolution', 'movement to the other place where they can exist', and so on in the changed environment, they would extinct. In this respect, if climate change is continued, biodiversity should be damaged greatly. Furthermore, climate change would also influence on human life and socio-economic environment through change of biodiversity. Therefore, we need to grasp the effects that climate change influences on biodiversity more actively and further to prepare the alternatives to reduce the damage. Change of phenology, change of distribution range including vegetation shift, disharmony of interaction among organisms, reduction of reproduction and growth rates due to odd food chain, degradation of coral reef, and so on are emerged as the effects of climate change on biodiversity. Expansion of infectious disease, reduction of food production, change of cultivation range of crops, change of fishing ground and time, and so on appear as the effects on human. To solve climate change problem, first of all, we need to mitigate climate change by reducing discharge of warming gases. But even though we now stop discharge of warming gases, climate change is expected to be continued for the time being. In this respect, preparing adaptive strategy of climate change can be more realistic. Continuous monitoring to observe the effects of climate change on biodiversity and establishment of monitoring system have to be preceded over all others. Insurance of diverse ecological spaces where biodiversity can establish, assisted migration, and establishment of horizontal network from south to north and vertical one from lowland to upland ecological networks could be recommended as the alternatives to aid adaptation of biodiversity to the changing climate.

A Study on the Legislative Guidelines for Airline Consumer Protection (항공소비자 보호제도의 입법방향)

  • Lee, Chang-Jae
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.32 no.1
    • /
    • pp.3-51
    • /
    • 2017
  • From a historical point of view, while the Warsaw Convention was passed in 1924 to regulate the unified judicial responsibility in the global air transportation industry, protection of airline consumers was somewhat lacking in protecting air carriers. In principle, the air carrier does not bear any obligation or liability when the aircraft is not operated normally due to natural disasters such as typhoon or heavy snowfall. However, in recent years, in developed countries such as the US and Europe, there has been a movement in which regulates the air carriers' obligation to protect their passengers even if there is no misconduct or negligence. Furthermore, the legislation of such advanced countries imposes an obligation on the airlines to compensate the loss separately from damages in case the abnormal operation of the aircraft is not caused by force majeure but caused by their negligence. Under this historical and international context, Korea is also modifying the system of aviation consumer protection by referring to other foreign legislation. However, when compared with foreign countries, our norm has a few drawbacks. First, the airline's protection or care obligations are mixed with the legal liability for damages in the provision, which seems to be due to the lack of understanding of the airline's passenger protection obligation. The liability for damages, which is governed by the International Convention or the Commercial Act, shall be determined by judging the cause of the airline's liability in respect of the damage of the individual passenger in the course of the air transportation. However, the duty to care and the burden for compensation shall be granted to all passengers who feel uncomfortable with the abnormal operation regardless of the cause of the accident. Also, our compensation system for denied boarding due to oversale is too low compared to the case of foreign countries, and setting the compensation amount range differently based on the time for the re-routing is somewhat unclear. Regarding checked-baggage claim, it will be necessary to refund the fee only from the fact that the baggage is delayed without asking whether there is any damage occurred from the delayed baggage. This is the content of the duty to care, which is different from the current Commercial Act or the international convention, in which responsibility is different depending on whether the airline takes all the necessary measures in order to prevent delaying of the baggage. The content of force majeure, which is a requirement for exemption from the obligation to care passengers on the airplane, shall be reconsidered. Maintenance for safe navigation is not considered to be included in force majeure, and connection to airplanes, airport conditions are disputable. According to the EC Regulation, if the cause of the abnormal operation of the airline is force majeure, the airline's compensation obligation is exempted but the duty to care of airline company is still meaningful. Furthermore, even if the main role of aviation consumer protection is on an airline, it is the responsibility of government agencies to supervise the fulfillment of such protection obligations. Therefore, it is necessary for the Korean government to actively take measures such as enforcing incentives for airlines that faithfully fulfill their obligation to care and imposed penalties on the contrary.

  • PDF

A study on Development Process of Fish Aquaculture in Japan - Case by Seabream Aquaculture - (일본 어류 양식업의 발전과정과 산지교체에 관한 연구 : 참돔양식업을 사례로)

  • 송정헌
    • The Journal of Fisheries Business Administration
    • /
    • v.34 no.2
    • /
    • pp.75-90
    • /
    • 2003
  • When we think of fundamental problems of the aquaculture industry, there are several strict conditions, and consequently the aquaculture industry is forced to change. Fish aquaculture has a structural supply surplus in production, aggravation of fishing grounds, stagnant low price due to recent recession, and drastic change of distribution circumstances. It is requested for us to initiate discussion on such issue as “how fish aquaculture establishes its status in the coastal fishery\ulcorner, will fish aquaculture grow in the future\ulcorner, and if so “how it will be restructured\ulcorner” The above issues can be observed in the mariculture of yellow tail, sea scallop and eel. But there have not been studied concerning seabream even though the production is over 30% of the total production of fish aquaculture in resent and it occupied an important status in the fish aquaculture. The objectives of this study is to forecast the future movement of sea bream aquaculture. The first goal of the study is to contribute to managerial and economic studies on the aquaculture industry. The second goal is to identify the factors influencing the competition between production areas and to identify the mechanisms involved. This study will examine the competitive power in individual producing area, its behavior, and its compulsory factors based on case study. Producing areas will be categorized according to following parameters : distance to market and availability of transportation, natural environment, the time of formation of producing areas (leaderㆍfollower), major production items, scale of business and producing areas, degree of organization in production and sales. As a factor in shaping the production area of sea bream aquaculture, natural conditions especially the water temperature is very important. Sea bream shows more active feeding and faster growth in areas located where the water temperature does not go below 13∼14$^{\circ}C$ during the winter. Also fish aquaculture is constrained by the transporting distance. Aquacultured yellowtail is a mass-produced and a mass-distributed item. It is sold a unit of cage and transported by ship. On the other hand, sea bream is sold in small amount in markets and transported by truck; so, the transportation cost is higher than yellow tail. Aquacultured sea bream has different product characteristics due to transport distance. We need to study live fish and fresh fish markets separately. Live fish was the original product form of aquacultured sea bream. Transportation of live fish has more constraints than the transportation of fresh fish. Death rate and distance are highly correlated. In addition, loading capacity of live fish is less than fresh fish. In the case of a 10 ton truck, live fish can only be loaded up to 1.5 tons. But, fresh fish which can be placed in a box can be loaded up to 5 to 6 tons. Because of this characteristics, live fish requires closer location to consumption area than fresh fish. In the consumption markets, the size of fresh fish is mainly 0.8 to 2kg.Live fish usually goes through auction, and quality is graded. Main purchaser comes from many small-sized restaurants, so a relatively small farmer and distributer can sell it. Aquacultured sea bream has been transacted as a fresh fish in GMS ,since 1993 when the price plummeted. Economies of scale works in case of fresh fish. The characteristics of fresh fish is as follows : As a large scale demander, General Merchandise Stores are the main purchasers of sea bream and the size of the fish is around 1.3kg. It mainly goes through negotiation. Aquacultured sea bream has been established as a representative food in General Merchandise Stores. GMS require stable and mass supply, consistent size, and low price. And Distribution of fresh fish is undertook by the large scale distributers, which can satisfy requirements of GMS. The market share in Tokyo Central Wholesale Market shows Mie Pref. is dominating in live fish. And Ehime Pref. is dominating in fresh fish. Ehime Pref. showed remarkable growth in 1990s. At present, the dealings of live fish is decreasing. However, the dealings of fresh fish is increasing in Tokyo Central Wholesale Market. The price of live fish is decreasing more than one of fresh fish. Even though Ehime Pref. has an ideal natural environment for sea bream aquaculture, its entry into sea bream aquaculture was late, because it was located at a further distance to consumers than the competing producing areas. However, Ehime Pref. became the number one producing areas through the sales of fresh fish in the 1990s. The production volume is almost 3 times the production volume of Mie Pref. which is the number two production area. More conversion from yellow tail aquaculture to sea bream aquaculture is taking place in Ehime Pref., because Kagosima Pref. has a better natural environment for yellow tail aquaculture. Transportation is worse than Mie Pref., but this region as a far-flung producing area makes up by increasing the business scale. Ehime Pref. increases the market share for fresh fish by creating demand from GMS. Ehime Pref. has developed market strategies such as a quick return at a small profit, a stable and mass supply and standardization in size. Ehime Pref. increases the market power by the capital of a large scale commission agent. Secondly Mie Pref. is close to markets and composed of small scale farmers. Mie Pref. switched to sea bream aquaculture early, because of the price decrease in aquacultured yellou tail and natural environmental problems. Mie Pref. had not changed until 1993 when the price of the sea bream plummeted. Because it had better natural environment and transportation. Mie Pref. has a suitable water temperature range required for sea bream aquaculture. However, the price of live sea bream continued to decline due to excessive production and economic recession. As a consequence, small scale farmers are faced with a market price below the average production cost in 1993. In such kind of situation, the small-sized and inefficient manager in Mie Pref. was obliged to withdraw from sea bream aquaculture. Kumamoto Pref. is located further from market sites and has an unsuitable nature environmental condition required for sea bream aquaculture. Although Kumamoto Pref. is trying to convert to the puffer fish aquaculture which requires different rearing techniques, aquaculture technique for puffer fish is not established yet.

  • PDF

Evaluation of the Usefulness of Exactrac in Image-guided Radiation Therapy for Head and Neck Cancer (두경부암의 영상유도방사선치료에서 ExacTrac의 유용성 평가)

  • Baek, Min Gyu;Kim, Min Woo;Ha, Se Min;Chae, Jong Pyo;Jo, Guang Sub;Lee, Sang Bong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.7-15
    • /
    • 2020
  • Purpose: In modern radiotherapy technology, several methods of image guided radiation therapy (IGRT) are used to deliver accurate doses to tumor target locations and normal organs, including CBCT (Cone Beam Computed Tomography) and other devices, ExacTrac System, other than CBCT equipped with linear accelerators. In previous studies comparing the two systems, positional errors were analysed rearwards using Offline-view or evaluated only with a Yaw rotation with the X, Y, and Z axes. In this study, when using CBCT and ExacTrac to perform 6 Degree of the Freedom(DoF) Online IGRT in a treatment center with two equipment, the difference between the set-up calibration values seen in each system, the time taken for patient set-up, and the radiation usefulness of the imaging device is evaluated. Materials and Methods: In order to evaluate the difference between mobile calibrations and exposure radiation dose, the glass dosimetry and Rando Phantom were used for 11 cancer patients with head circumference from March to October 2017 in order to assess the difference between mobile calibrations and the time taken from Set-up to shortly before IGRT. CBCT and ExacTrac System were used for IGRT of all patients. An average of 10 CBCT and ExacTrac images were obtained per patient during the total treatment period, and the difference in 6D Online Automation values between the two systems was calculated within the ROI setting. In this case, the area of interest designation in the image obtained from CBCT was fixed to the same anatomical structure as the image obtained through ExacTrac. The difference in positional values for the six axes (SI, AP, LR; Rotation group: Pitch, Roll, Rtn) between the two systems, the total time taken from patient set-up to just before IGRT, and exposure dose were measured and compared respectively with the RandoPhantom. Results: the set-up error in the phantom and patient was less than 1mm in the translation group and less than 1.5° in the rotation group, and the RMS values of all axes except the Rtn value were less than 1mm and 1°. The time taken to correct the set-up error in each system was an average of 256±47.6sec for IGRT using CBCT and 84±3.5sec for ExacTrac, respectively. Radiation exposure dose by IGRT per treatment was measured at 37 times higher than ExacTrac in CBCT and ExacTrac at 2.468mGy and 0.066mGy at Oral Mucosa among the 7 measurement locations in the head and neck area. Conclusion: Through 6D online automatic positioning between the CBCT and ExacTrac systems, the set-up error was found to be less than 1mm, 1.02°, including the patient's movement (random error), as well as the systematic error of the two systems. This error range is considered to be reasonable when considering that the PTV Margin is 3mm during the head and neck IMRT treatment in the present study. However, considering the changes in target and risk organs due to changes in patient weight during the treatment period, it is considered to be appropriately used in combination with CBCT.