DOI QR코드

DOI QR Code

Sapflux Measurement Database Using Granier's Heat Dissipation Method and Heat Pulse Method

수액류 측정 데이터베이스: 그래니어(Granier) 센서 열손실탐침법(Heat Dissipation Method)과 열파동법(Heat Pulse Method)을 이용한 수액류 측정

  • Lee, Minsu (Department of Agriculture, Forestry and Bioresources, Seoul National University) ;
  • Park, Juhan (National Center for Agro Meteorology Seoul National University) ;
  • Cho, Sungsik (National Center for Agro Meteorology Seoul National University) ;
  • Moon, Minkyu (Department of Earth and Environment, Boston University) ;
  • Ryu, Daun (Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University) ;
  • Lee, Hoontaek (National Institute of Forest Science) ;
  • Lee, Hojin (Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University) ;
  • Kim, Sookyung (Department of Agriculture, Forestry and Bioresources, Seoul National University) ;
  • Kim, Taekyung (Department of Agriculture, Forestry and Bioresources, Seoul National University) ;
  • Byeon, Siyeon (Department of Agriculture, Forestry and Bioresources, Seoul National University) ;
  • Jeon, Jihyun (Department of Agriculture, Forestry and Bioresources, Seoul National University) ;
  • Bhusal, Narayan (Department of Agriculture, Forestry and Bioresources, Seoul National University) ;
  • Kim, Hyun Seok (Department of Agriculture, Forestry and Bioresources, Seoul National University)
  • 이민수 (서울대학교 농림생물자원학부) ;
  • 박주한 (국가농림기상센터) ;
  • 조성식 (국가농림기상센터) ;
  • 문민규 (보스턴대학교 지구환경과학부) ;
  • 류다운 (협동과정 농림기상학) ;
  • 이훈택 (국립산림과학원) ;
  • 이호진 (협동과정 농림기상학) ;
  • 김수경 (서울대학교 농림생물자원학부) ;
  • 김태경 (서울대학교 농림생물자원학부) ;
  • 변시연 (서울대학교 농림생물자원학부) ;
  • 전지현 (서울대학교 농림생물자원학부) ;
  • 나라얀 부살 (서울대학교 농림생물자원학부) ;
  • 김현석 (서울대학교 농림생물자원학부)
  • Received : 2020.09.04
  • Accepted : 2020.10.13
  • Published : 2020.12.30

Abstract

Transpiration is the movement of water into the atmosphere through leaf stomata of plant, and it accounts for more than half of evapotranspiration from the land surface. The measurements of transpiration could be conducted in various ways including eddy covariance and water balance method etc. However, the transpiration measurements of individual trees are necessary to quantify and compare the water use of each species and individual component within stands. For the measurement of the transpiration by individual tree, the thermometric methods such as heat dissipation and heat pulse methods are widely used. However, it is difficult and labor consuming to maintain the transpiration measurements of individual trees in a wide range area and especially for long-term experiment. Therefore, the sharing of sapflow data through database should be useful to promote the studies on transpiration and water balance for large spatial scale. In this paper, we present sap flow database, which have Granier type sap flux data from 18 Korean pine (Pinus koraiensis) since 2011 and 16 (Quercus aliena) since 2013 in Mt.Taehwa Seoul National University forest and 18 needle fir (Abies holophylla), seven (Quercus serrata), three (Carpinus laxiflora and C. cordata each since 2013 in Gwangneung. In addition, the database includes the sapling transpiration of nine species (Prunus sargentii, Larix kaempferii, Quercus accutisima, Pinus densiflora, Fraxinus rhynchophylla, Chamecypans obtuse, P. koraiensis, Betulla platyphylla, A. holophylla, Pinus thunbergii), which were measured using heat pulse method since 2018. We believe this is the first database to share the sapflux data in Rep. of Korea, and we wish our database to be used by other researchers and contribute a variety of researches in this field.

증산은 물이 기공을 통해 대기 중으로 이동하는 과정으로, 지표면의 물은 상당부분 증산을 통해 대기 중으로 이동한다. 에디공분산, 수분 수지 측정법 등의 증산량을 측정하는 방법이 있지만, 수종 및 임분의 구성 요소별 증산량의 차이를 비교하기 위해서는 개체목 증산량 측정이 필요하다. 개체목 증산량을 측정하기 위해 수액의 온도차를 이용한 수액류 측정법을 가장 널리 이용하고 있지만, 넓은 범위의 지역을 장기간 조사하기에 한계가 있다. 따라서 큰 공간적 규모에 대해 수액류 및 증산량에 대한 연구를 하기 위해서는 각 지역별로 측정한 데이터의 공유가 필요하다. 본 연구팀은 태화산 학술림에서 열손실탐침법을 이용하여 2011년부터 잣나무(Pinus koraiensis) 18본, 2013년부터 갈참나무(Quercus aliena) 16본을 대상으로 수액류를 측정하고 있으며, 광릉수목원에서도 열손실탐침법을 이용하여, 2013년부터 전나무(Abies holophylla) 18본, 졸참나무(Quercus serrata) 7본, 서어나무(Carpinus laxiflora) 3본, 까치박달(Carpinus cordata) 3본을 대상으로 수액류를 측정하고 있다. 구례 지리산 조사지에서는 열 파동법으로 2018년부터 산벚나무(Prunus sargentii), 낙엽송(Larix kaempferii), 2019년에는 추가로 상수리나무(Quercus accutisima), 소나무(Pinus densiflora), 물푸레나무(Fraxinus rhynchophylla)를 대상으로 수액류를 측정하였으며, 2020년에는 편백(Chamecypans obtuse), 잣나무(P. koraiensis), 자작나무(Betulla platyphylla), 전나무(A. holophylla), 곰솔(Pinus thrunbergii)을 대상으로 수액류를 측정하고 있다. 우리나라 산림의 수액류 데이터를 더욱 활발하게 공유하여 국내 산림생태계에서 개체목과 임분의 수액류와 증산의 환경민감성 등 다양한 연구에 기여할 것으로 기대한다.

Keywords

Acknowledgement

본 연구는 산림청 연구과제 '온대북부 산림의 시계열 특성 분석 및 기후변화적응 관리기법 연구(S211315L020120, S111215L020110)', '신기후체제 대응을 위한 다목적 산림경영 의사결정 지원시스템 개발(2018113A00-2020-BB01)'과 '산림재해·복원 인력양성사업단(2020185D10–2022-AA02)'의 지원에 의하여 이루어진 것입니다.

References

  1. Aubinet, M., T. Vesala, and D. Papale, 2012: Eddy covariance: a practical guide to measurement and data analysis. Springer Science & Business Media.
  2. Bhusal, N., M. Lee, A. R. Han, A. Han, and H. S. Kim, 2020: Responses to drought stress in Prunus sargentii and Larix kaempferi seedlings using morphological and physiological parameters. Forest Ecology and Management 465, 118099. https://doi.org/10.1016/j.foreco.2020.118099
  3. Bond-Lamberty, B., and A. Thomson, 2010: A global database of soil respiration data. Biogeosciences 7(6).
  4. Burgess, S. S. O., M. A. Adams, N. C. Turner, C. R. Beverly, C. K. Ong, A. A. H. Khan, and T. M. Bleby, 2001: An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiology 21(9), 589-598. https://doi.org/10.1093/treephys/21.9.589
  5. Cermak, J., M. Deml, and M. Penka, 1973: New method of sap flow-rate determination in trees. Biologia Plantarum 15(3), 171-178. https://doi.org/10.1007/BF02922390
  6. Clearwater, M. J., Z. Luo, M. Mazzeo, and B. Dichio, 2009: An external heat pulse method for measurement of sap flow through fruit pedicels, leaf petioles and other small-diameter stems. Plant Cell Environ 32(12), 1652-1663. https://doi.org/10.1111/j.1365-3040.2009.02026.x
  7. Cochard, H., N. Breda, and A. Granier, 1996: Whole tree hydraulic conductance and water loss regulation in Quercus during drought: evidence for stomatal control of embolism? Annales des Sciences Forestieres EDP Sciences 53(2-3), 197-206. https://doi.org/10.1051/forest:19960203
  8. Daum, C. R., 1967: A method for determining water transport in trees. Ecology 48(3), 425-431. https://doi.org/10.2307/1932677
  9. Dierick, D., N. Kunert, M. Kohler, L. Schwendenmann, and D. Holscher, 2010: Comparison of tree water use characteristics in reforestation and agroforestry stands across the tropics. In Tropical rainforests and agroforests under global change. Springer, Berlin, Heidelberg, 293-308.
  10. Duursma, R. A., P. Kolari, M. Peramaki, E. Nikinmaa, P. Hari, S. Delzon, D. Loustau, H. Ilvesniemi, J. Pumpanen, and A. Makela, 2008: Predicting the decline in daily maximum transpiration rate of two pine stands during drought based on constant minimum leaf water potential and plant hydraulic conductance. Tree physiology 28(2), 265-276. https://doi.org/10.1093/treephys/28.2.265
  11. Flo, V., J. Martinez-Vilalta, K. Steppe, B. Schuldt, and R. Poyatos, 2019: A synthesis of bias and uncertainty in sap flow methods. Agricultural and Forest Meteorology 271, 362-374. https://doi.org/10.1016/j.agrformet.2019.03.012
  12. Forrester, D. I., S. Theiveyanathan, J. J. Collopy, and N. E. Marcar, 2010: Enhanced water use efficiency in a mixed Eucalyptus globulus and Acacia mearnsii plantation. Forest Ecology and Management 259(9), 1761-1770. https://doi.org/10.1016/j.foreco.2009.07.036
  13. Goldstein, G., J. L. Andrade, F. C. Meinzer, N. M. Holbrook, J. Cavelier, P. Jackson, and A. Celis, 1998: Stem water storage and diurnal patterns of water use in tropical forest canopy trees. Plant, Cell & Environment 21(4), 397-406. https://doi.org/10.1046/j.1365-3040.1998.00273.x
  14. Granier, A., 1985: A new method of sap flow measurement in tree stems. Annales des Sciences Forestieres 42(2), 193-200. https://doi.org/10.1051/forest:19850204
  15. Granier, A., 1987: Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree physiology 3(4), 309-320. https://doi.org/10.1093/treephys/3.4.309
  16. Grossiord, C., B. Christoffersen, A. M. Alonso-Rodriguez, K. Anderson-Teixeira, H. Asbjornsen, L. Maria, T. Aparecido, Z. Carter Berry, C. Baraloto, D. Bonal, I. Borrego, B. Burban, J. Q. Chambers, D. S. Christianson, M. Detto, B. Faybishenko, C. G. Fontes, C. Fortunel, B. O. Gimenez, K. J. Jardine, L. Kueppers, G. R. Miller, G. W. Moore, R. Negron-Juarez, C. Stahl, N. G. Swenson, V. Trotsiuk, C. Varadharajan, J. M. Warren, B. T. Wolfe, L. Wei, T. E. Wood, C. Xu, and N. G. McDowell, 2019: Precipitation mediates sap flux sensitivity to evaporative demand in the neotropics. Oecologia 191(3), 519-530. https://doi.org/10.1007/s00442-019-04513-x
  17. Jung, M., S. Koirala, U. Weber, K. Ichii, F. Gans, G. Camps-Valls, D. Papale, C. Schwalm, G. Tramontana and M. Reichstein, 2019: The FLUXCOM ensemble of global land-atmosphere energy fluxes. Scientific data 6(1), 1-14. https://doi.org/10.1038/s41597-018-0005-2
  18. Kallarackal, D. O. Otieno, B. Reineking, E.-Y. Jung, M. W. T. Schmidt, A. Granier, and J. D. Tenhunen, 2013: Functional convergence in water use of trees from different geographical regions: a meta-analysis. Trees 27(3): 787-799. https://doi.org/10.1007/s00468-012-0834-0
  19. Kool, D., N. Agam, N. Lazarovitch, J. L. Heitman, T. J. Sauer, and A. Ben-Gal, 2014: A review of approaches for evapotranspiration partitioning. Agricultural and Forest Meteorology 184, 56-70. https://doi.org/10.1016/j.agrformet.2013.09.003
  20. Kwon, B., J. Jeon, H. S. Kim, and M. J. Yi, 2016: Estimation of specific leaf area index using direct method by leaf litter in Gwangneung, Mt. Taewha and Mt. Gariwang. Korean Journal of Agricultural and Forest Meteorology 18(1), 1-15. (in Korean with English abstract). https://doi.org/10.5532/KJAFM.2016.18.1.1
  21. Martin-StPaul, N., S. Delzon, and H. Cochard, 2017: Plant resistance to drought depends on timely stomatal closure. Ecology Letters 20(11), 1437-1447. https://doi.org/10.1111/ele.12851
  22. Meinzer, F. C., B. J. Bond, J. M. Warren, and D. R. Woodruff, 2005: Does water transport scale universally with tree size? Functional Ecology 19(4), 558-565. https://doi.org/10.1111/j.1365-2435.2005.01017.x
  23. Moon, M., T. Kim, J. Park, S. Cho, D. Ryu and H. S. Kim, 2015: Variation in sap flux density and its effect on stand transpiration estimates of Korean pine stands. Journal of Forest Research 20(1), 85-93. https://doi.org/10.1007/s10310-014-0463-0
  24. Nadezhdina, N., J. Cermak, and V. Nadezhdin, 1998: Heat field deformation method for sap flow measurements, Measuring sap flow in intact plants. Proceedings of 4th International Workshop, Zidlochovice, Czech Republic, IUFRO Publ. Brno, Czech Republic: Mendel University, 72-92.
  25. Novick, K., R. Oren, P. Stoy, J.-Y. Juang, M. Siqueira, and G. Katul, 2009: The relationship between reference canopy conductance and simplified hydraulic architecture. Advances in Water Resources 32(6), 809-819. https://doi.org/10.1016/j.advwatres.2009.02.004
  26. Oishi, A. C., D. A. Hawthorne, and R. Oren, 2016: Baseliner: an open-source, interactive tool for processing sap flux data from thermal dissipation probes. SoftwareX 5, 139-143. https://doi.org/10.1016/j.softx.2016.07.003
  27. Oren, R., J. S. Sperry, G. G. Katul, D. E. Pataki, B. E. Ewers, N. Phillips, K. V. R. Schafer, 1999: Survey and synthesis of intra-and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant, Cell & Environment 22(12), 1515-1526. https://doi.org/10.1046/j.1365-3040.1999.00513.x
  28. Park, J., T. Kim, M. Moon, S. Cho, D. Ryu, and H. S. Kim, 2018: Effects of thinning intensities on tree water use, growth, and resultant water use efficiency of 50-year-old Pinus koraiensis forest over four years. Forest Ecology and Management 408, 121-128. https://doi.org/10.1016/j.foreco.2017.09.031
  29. Phillips, N., and R. Oren, 1998: A comparison of daily representations of canopy conductance based on two conditional time-averaging methods and the dependence of daily conductance on environmental factors. Annales des Sciences Forestieres EDP Sciences 55(1-2), 217-235. https://doi.org/10.1051/forest:19980113
  30. Poyatos, R., V. Granda, R. Molowny-Horas, M. Mencuccini, K. Steppe, and J. Martinez-Vilalta, 2016: SAPFLUXNET: towards a global database of sap flow measurements. Tree Physiology 36(12), 1449-1455. https://doi.org/10.1093/treephys/tpw110
  31. Schlesinger, W. H., and S. Jasechko, 2014: Transpiration in the global water cycle. Agricultural and Forest Meteorology 189, 115-117. https://doi.org/10.1016/j.agrformet.2014.01.011
  32. Stoy, P. C., T. S. El-Madany, J. B. Fisher, P. Gentine, T. Gerken, S. P. Good, A. Klosterhalfen, S. Liu, D. G. Miralles, O. Perez-Priego, A. J. Rigden, T. H. Skaggs, G. Wohlfahrt, R. G. Anderson, A. M. J. Coenders-Gerrits, M. Jung, W. H. Maes, I. Mammarella, M. Mauder, M. Migliavacca, J. A. Nelson, R. Poyatos, M. Reichstein, R. L. Scott, and S. Wolf, 2019: Reviews and syntheses: Turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities. Biogeosciences 16(19), 3747-3775. https://doi.org/10.5194/bg-16-3747-2019
  33. Swanson, R., and D. Whitfield, 1981: A numerical analysis of heat pulse velocity theory and practice. Journal of experimental botany 32(1), 221-239. https://doi.org/10.1093/jxb/32.1.221
  34. Zhao, W. L., P. Gentine, M. Reichstein, Y. Zhang, S. Zhou, Y. Wen,C. Lin, X. Li, and G. Y. Qiu, 2019: Physics-constrained machine learning of evapotranspiration. Geophysical Research Letters 46(24), 14496-14507. https://doi.org/10.1029/2019gl085291