Browse > Article
http://dx.doi.org/10.5532/KJAFM.2020.22.4.327

Sapflux Measurement Database Using Granier's Heat Dissipation Method and Heat Pulse Method  

Lee, Minsu (Department of Agriculture, Forestry and Bioresources, Seoul National University)
Park, Juhan (National Center for Agro Meteorology Seoul National University)
Cho, Sungsik (National Center for Agro Meteorology Seoul National University)
Moon, Minkyu (Department of Earth and Environment, Boston University)
Ryu, Daun (Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University)
Lee, Hoontaek (National Institute of Forest Science)
Lee, Hojin (Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University)
Kim, Sookyung (Department of Agriculture, Forestry and Bioresources, Seoul National University)
Kim, Taekyung (Department of Agriculture, Forestry and Bioresources, Seoul National University)
Byeon, Siyeon (Department of Agriculture, Forestry and Bioresources, Seoul National University)
Jeon, Jihyun (Department of Agriculture, Forestry and Bioresources, Seoul National University)
Bhusal, Narayan (Department of Agriculture, Forestry and Bioresources, Seoul National University)
Kim, Hyun Seok (Department of Agriculture, Forestry and Bioresources, Seoul National University)
Publication Information
Korean Journal of Agricultural and Forest Meteorology / v.22, no.4, 2020 , pp. 327-339 More about this Journal
Abstract
Transpiration is the movement of water into the atmosphere through leaf stomata of plant, and it accounts for more than half of evapotranspiration from the land surface. The measurements of transpiration could be conducted in various ways including eddy covariance and water balance method etc. However, the transpiration measurements of individual trees are necessary to quantify and compare the water use of each species and individual component within stands. For the measurement of the transpiration by individual tree, the thermometric methods such as heat dissipation and heat pulse methods are widely used. However, it is difficult and labor consuming to maintain the transpiration measurements of individual trees in a wide range area and especially for long-term experiment. Therefore, the sharing of sapflow data through database should be useful to promote the studies on transpiration and water balance for large spatial scale. In this paper, we present sap flow database, which have Granier type sap flux data from 18 Korean pine (Pinus koraiensis) since 2011 and 16 (Quercus aliena) since 2013 in Mt.Taehwa Seoul National University forest and 18 needle fir (Abies holophylla), seven (Quercus serrata), three (Carpinus laxiflora and C. cordata each since 2013 in Gwangneung. In addition, the database includes the sapling transpiration of nine species (Prunus sargentii, Larix kaempferii, Quercus accutisima, Pinus densiflora, Fraxinus rhynchophylla, Chamecypans obtuse, P. koraiensis, Betulla platyphylla, A. holophylla, Pinus thunbergii), which were measured using heat pulse method since 2018. We believe this is the first database to share the sapflux data in Rep. of Korea, and we wish our database to be used by other researchers and contribute a variety of researches in this field.
Keywords
Sapflux; Database; Data-sharing; Thermometric method; Granier type; Heat pulse method;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Aubinet, M., T. Vesala, and D. Papale, 2012: Eddy covariance: a practical guide to measurement and data analysis. Springer Science & Business Media.
2 Bhusal, N., M. Lee, A. R. Han, A. Han, and H. S. Kim, 2020: Responses to drought stress in Prunus sargentii and Larix kaempferi seedlings using morphological and physiological parameters. Forest Ecology and Management 465, 118099.   DOI
3 Bond-Lamberty, B., and A. Thomson, 2010: A global database of soil respiration data. Biogeosciences 7(6).
4 Burgess, S. S. O., M. A. Adams, N. C. Turner, C. R. Beverly, C. K. Ong, A. A. H. Khan, and T. M. Bleby, 2001: An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiology 21(9), 589-598.   DOI
5 Cermak, J., M. Deml, and M. Penka, 1973: New method of sap flow-rate determination in trees. Biologia Plantarum 15(3), 171-178.   DOI
6 Clearwater, M. J., Z. Luo, M. Mazzeo, and B. Dichio, 2009: An external heat pulse method for measurement of sap flow through fruit pedicels, leaf petioles and other small-diameter stems. Plant Cell Environ 32(12), 1652-1663.   DOI
7 Cochard, H., N. Breda, and A. Granier, 1996: Whole tree hydraulic conductance and water loss regulation in Quercus during drought: evidence for stomatal control of embolism? Annales des Sciences Forestieres EDP Sciences 53(2-3), 197-206.   DOI
8 Daum, C. R., 1967: A method for determining water transport in trees. Ecology 48(3), 425-431.   DOI
9 Duursma, R. A., P. Kolari, M. Peramaki, E. Nikinmaa, P. Hari, S. Delzon, D. Loustau, H. Ilvesniemi, J. Pumpanen, and A. Makela, 2008: Predicting the decline in daily maximum transpiration rate of two pine stands during drought based on constant minimum leaf water potential and plant hydraulic conductance. Tree physiology 28(2), 265-276.   DOI
10 Dierick, D., N. Kunert, M. Kohler, L. Schwendenmann, and D. Holscher, 2010: Comparison of tree water use characteristics in reforestation and agroforestry stands across the tropics. In Tropical rainforests and agroforests under global change. Springer, Berlin, Heidelberg, 293-308.
11 Flo, V., J. Martinez-Vilalta, K. Steppe, B. Schuldt, and R. Poyatos, 2019: A synthesis of bias and uncertainty in sap flow methods. Agricultural and Forest Meteorology 271, 362-374.   DOI
12 Forrester, D. I., S. Theiveyanathan, J. J. Collopy, and N. E. Marcar, 2010: Enhanced water use efficiency in a mixed Eucalyptus globulus and Acacia mearnsii plantation. Forest Ecology and Management 259(9), 1761-1770.   DOI
13 Goldstein, G., J. L. Andrade, F. C. Meinzer, N. M. Holbrook, J. Cavelier, P. Jackson, and A. Celis, 1998: Stem water storage and diurnal patterns of water use in tropical forest canopy trees. Plant, Cell & Environment 21(4), 397-406.   DOI
14 Granier, A., 1985: A new method of sap flow measurement in tree stems. Annales des Sciences Forestieres 42(2), 193-200.   DOI
15 Kwon, B., J. Jeon, H. S. Kim, and M. J. Yi, 2016: Estimation of specific leaf area index using direct method by leaf litter in Gwangneung, Mt. Taewha and Mt. Gariwang. Korean Journal of Agricultural and Forest Meteorology 18(1), 1-15. (in Korean with English abstract).   DOI
16 Granier, A., 1987: Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree physiology 3(4), 309-320.   DOI
17 Grossiord, C., B. Christoffersen, A. M. Alonso-Rodriguez, K. Anderson-Teixeira, H. Asbjornsen, L. Maria, T. Aparecido, Z. Carter Berry, C. Baraloto, D. Bonal, I. Borrego, B. Burban, J. Q. Chambers, D. S. Christianson, M. Detto, B. Faybishenko, C. G. Fontes, C. Fortunel, B. O. Gimenez, K. J. Jardine, L. Kueppers, G. R. Miller, G. W. Moore, R. Negron-Juarez, C. Stahl, N. G. Swenson, V. Trotsiuk, C. Varadharajan, J. M. Warren, B. T. Wolfe, L. Wei, T. E. Wood, C. Xu, and N. G. McDowell, 2019: Precipitation mediates sap flux sensitivity to evaporative demand in the neotropics. Oecologia 191(3), 519-530.   DOI
18 Jung, M., S. Koirala, U. Weber, K. Ichii, F. Gans, G. Camps-Valls, D. Papale, C. Schwalm, G. Tramontana and M. Reichstein, 2019: The FLUXCOM ensemble of global land-atmosphere energy fluxes. Scientific data 6(1), 1-14.   DOI
19 Kallarackal, D. O. Otieno, B. Reineking, E.-Y. Jung, M. W. T. Schmidt, A. Granier, and J. D. Tenhunen, 2013: Functional convergence in water use of trees from different geographical regions: a meta-analysis. Trees 27(3): 787-799.   DOI
20 Kool, D., N. Agam, N. Lazarovitch, J. L. Heitman, T. J. Sauer, and A. Ben-Gal, 2014: A review of approaches for evapotranspiration partitioning. Agricultural and Forest Meteorology 184, 56-70.   DOI
21 Martin-StPaul, N., S. Delzon, and H. Cochard, 2017: Plant resistance to drought depends on timely stomatal closure. Ecology Letters 20(11), 1437-1447.   DOI
22 Oren, R., J. S. Sperry, G. G. Katul, D. E. Pataki, B. E. Ewers, N. Phillips, K. V. R. Schafer, 1999: Survey and synthesis of intra-and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant, Cell & Environment 22(12), 1515-1526.   DOI
23 Meinzer, F. C., B. J. Bond, J. M. Warren, and D. R. Woodruff, 2005: Does water transport scale universally with tree size? Functional Ecology 19(4), 558-565.   DOI
24 Moon, M., T. Kim, J. Park, S. Cho, D. Ryu and H. S. Kim, 2015: Variation in sap flux density and its effect on stand transpiration estimates of Korean pine stands. Journal of Forest Research 20(1), 85-93.   DOI
25 Nadezhdina, N., J. Cermak, and V. Nadezhdin, 1998: Heat field deformation method for sap flow measurements, Measuring sap flow in intact plants. Proceedings of 4th International Workshop, Zidlochovice, Czech Republic, IUFRO Publ. Brno, Czech Republic: Mendel University, 72-92.
26 Novick, K., R. Oren, P. Stoy, J.-Y. Juang, M. Siqueira, and G. Katul, 2009: The relationship between reference canopy conductance and simplified hydraulic architecture. Advances in Water Resources 32(6), 809-819.   DOI
27 Oishi, A. C., D. A. Hawthorne, and R. Oren, 2016: Baseliner: an open-source, interactive tool for processing sap flux data from thermal dissipation probes. SoftwareX 5, 139-143.   DOI
28 Park, J., T. Kim, M. Moon, S. Cho, D. Ryu, and H. S. Kim, 2018: Effects of thinning intensities on tree water use, growth, and resultant water use efficiency of 50-year-old Pinus koraiensis forest over four years. Forest Ecology and Management 408, 121-128.   DOI
29 Poyatos, R., V. Granda, R. Molowny-Horas, M. Mencuccini, K. Steppe, and J. Martinez-Vilalta, 2016: SAPFLUXNET: towards a global database of sap flow measurements. Tree Physiology 36(12), 1449-1455.   DOI
30 Phillips, N., and R. Oren, 1998: A comparison of daily representations of canopy conductance based on two conditional time-averaging methods and the dependence of daily conductance on environmental factors. Annales des Sciences Forestieres EDP Sciences 55(1-2), 217-235.   DOI
31 Zhao, W. L., P. Gentine, M. Reichstein, Y. Zhang, S. Zhou, Y. Wen,C. Lin, X. Li, and G. Y. Qiu, 2019: Physics-constrained machine learning of evapotranspiration. Geophysical Research Letters 46(24), 14496-14507.   DOI
32 Schlesinger, W. H., and S. Jasechko, 2014: Transpiration in the global water cycle. Agricultural and Forest Meteorology 189, 115-117.   DOI
33 Stoy, P. C., T. S. El-Madany, J. B. Fisher, P. Gentine, T. Gerken, S. P. Good, A. Klosterhalfen, S. Liu, D. G. Miralles, O. Perez-Priego, A. J. Rigden, T. H. Skaggs, G. Wohlfahrt, R. G. Anderson, A. M. J. Coenders-Gerrits, M. Jung, W. H. Maes, I. Mammarella, M. Mauder, M. Migliavacca, J. A. Nelson, R. Poyatos, M. Reichstein, R. L. Scott, and S. Wolf, 2019: Reviews and syntheses: Turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities. Biogeosciences 16(19), 3747-3775.   DOI
34 Swanson, R., and D. Whitfield, 1981: A numerical analysis of heat pulse velocity theory and practice. Journal of experimental botany 32(1), 221-239.   DOI