• 제목/요약/키워드: Mouse gut microbiota

검색결과 27건 처리시간 0.021초

비만에서 장내 미생물 균총의 역할과 발효 한양의 활용 (The Role of Gut Microbiota in Obesity and Utilization of Fermented Herbal Extracts)

  • 박정현;김호준;이명종
    • 한방비만학회지
    • /
    • 제9권1호
    • /
    • pp.1-14
    • /
    • 2009
  • Complex microbial communities play an important role in the human health and co-evolved with human in the form of symbiosis. Many literatures provide new evidences that the increased prevalence of obesity cannot be attributed solely to changes in the human genome, nutritional habits, or reduction of physical activity in our daily lives. The intestinal flora was recently proposed as an environmental factor responsible for the control of body weight and energy metabolism. A number of studies suggest that the modulation of gut microbiota affects host metabolism and has an impact on energy storage and demonstrated a role for the gut microbiota in weight gain, fat increase, and insulin resistance. Variations in microbiota composition are found in obese humans and mice and the microbiota from an obese mouse confers an obese phenotype when transferred to an axenic mouse. As well, the gut microbial flora plays a role in converting nutrients into calories. Specific strategies for modifying gut microbiota may be a useful means to treat or prevent obesity. Dietary modulations of gut microbiota with a view to increasing bifidobacteria have demonstrated to reduce endotoxemia and improve metabolic diseases such as obesity. The fermentation of medicinal herbs is intended to exert a favorable influence on digestability, bioavailability and pharmacological activity of herbal extract. Therefore we also expect that the fermented herbal extracts may open up a new area to treat obesity through modulating gut microbiota.

  • PDF

A ketogenic diet reduces body weight gain and alters insulin sensitivity and gut microbiota in a mouse model of diet-induced obesity

  • Sumin Heo;Soo Jin Yang
    • Journal of Nutrition and Health
    • /
    • 제56권4호
    • /
    • pp.349-360
    • /
    • 2023
  • Purpose: Ketogenic diets (KDs) have anti-obesity effects that may be related to glucose control and the gut microbiota. This paper hypothesizes that KD reduces body weight and changes the insulin sensitivity and gut microbiota composition in a mouse model of diet-induced obesity. Methods: In this study, C57BL/6 male mice were assigned randomly to 3 groups. The assigned diets were provided to the control and high-fat (HF) diet groups for 14 weeks. The KD group was given a HF diet for 8 weeks to induce obesity, followed by feeding the KD for the next 6 weeks. Results: After the treatment period, the KD group exhibited a 35.82% decrease in body weight gain compared to the HF group. In addition, the KD group demonstrated enhanced glucose control, as shown by the lower levels of serum fasting glucose, serum fasting insulin, and the homeostatic model assessment of insulin resistance, compared to the HF group. An analysis of the gut microbiota using 16S ribosomal RNA sequencing revealed a significant decrease in the proportion of Firmicutes when the KD was administered. In addition, feeding the KD reduced the overall alpha-diversity measures and caused a notable separation of microbial composition compared to the HF diet group. The KD also led to a decrease in the relative abundance of specific species, such as Acetatifactor_muris, Ligilactobacillus_apodemi, and Muribaculum_intestinale, compared with the HF group. These species were positively correlated with the body weight, whereas the abundant species in the KD group (Kineothrix_alysoides and Saccharofermentans_acetigenes) showed a negative correlation with body weight. Conclusion: The current study presents supporting evidence that KD reduced the body weight and altered the insulin sensitivity and gut microbiota composition in a mouse model of diet-induced obesity.

Development of Gut Microbiota in a Mouse Model of Ovalbumin-induced Allergic Diarrhea under Sub-barrier System

  • Wang, Juan-Hong;Fan, Song-Wei;Zhu, Wei-Yun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권4호
    • /
    • pp.545-551
    • /
    • 2013
  • This study aimed to present a mouse model of ovalbumin (OVA) induced allergic diarrhea under a sub-barrier system and investigate the development of gut microbiota in this model. Male BALB/c mice were systemically sensitized with OVA or sham-sensitized with saline, and followed by oral OVA intubation, leading to OVA-specific acute diarrhea. Compared with sham-sensitized mice, sera OVA-specific IgG1 and total IgE in OVA-sensitized mice were dramatically elevated, and the number of mast cells was greatly increased in the jejunum of the OVA-sensitized mice. Principle component analysis of the DGGE profile showed that samples from group of OVA-sensitized mice and group of sham-sensitized mice were scattered into two different regions. Real-time PCR analysis showed that the number of 16S rRNA gene copies of Lactobacillus in the colon of OVA-sensitized mice decreased significantly, while there was no significant difference in the number of Bifidobacterium and total bacteria. In conclusion, OVA-specific allergic diarrhea was successfully induced under a sub-barrier system, and changes of allergic reactions during induction was coupled with changes in gut microbiota, especially the number of colonic Lactobacillus, but the role of gut microbiota in the development of food allergic reactions needs to be further evaluated.

A Detrimental Role of Immunosuppressive Drug, Dexamethasone, During Clostridium difficile Infection in Association with a Gastrointestinal Microbial Shift

  • Kim, Hyeun Bum;Wang, Yuankai;Sun, Xingmin
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권3호
    • /
    • pp.567-571
    • /
    • 2016
  • We investigated the increased risk of Clostridium difficile infection (CDI) caused by the combined use of antibiotics and an immunosuppressive drug in a mouse model. Our data showed that an approximate return to pretreatment conditions of gut microbiota occurred within days after cessation of the antibiotic treatment, whereas the recovery of gut microbiota was delayed with the combined treatment of antibiotics and dexamethasone, leading to an increased severity of CDI. An alteration of gut microbiota is a key player in CDI. Therefore, our data implied that immunosuppressive drugs can increase the risk of CDI through the delayed recovery of altered gut microbiota.

한약의 장내미생물 조절 효과에 대한 국내외 실험 연구 고찰 (A Review of the Experimental Studies on the Modulatory Effect Herbal Medicine on Gut Microbiota)

  • 안혜리;송지현;이혜림
    • 대한한방소아과학회지
    • /
    • 제34권4호
    • /
    • pp.43-58
    • /
    • 2020
  • Objectives The purpose of this study is to analyze the effect of various herbal medicin on gut microbiota. Methods Electronic searches were performed using NDSL, OASIS, KISS, KMBASE, K-portal, Pub med, Cochrane, CNKI. Results we analyzed 25 experimental studies on the effect of herbal medicine on microbiota. Diabetes, obesity, inflammatory bowel disease have been frequently studied in micobiota-related disease. The most common experimental animal model used in the studies C57BL/7 mouse. Among the studies wherein single herbal medication were used, Gynostemma pentaphyllum was most commonly studies, and different herbal medications were used in the studies wherein complex herbal medications were studied. Next generation sequencing was performed using Illumina MiSeq system, and gut microbiota analysis was performed using QIIME and Ribosomal Database Project (RDP). In most studies, the herbal medicines exerted regulatory effects on gut microbiota and improved the symptoms of the experimental groups. Conclusions This review provides basic data on the correlation between korean medicine and gut microbiota, as well as information for the development of korean medicine.

Effects of Antibiotics on the Uterine Microbial Community of Mice

  • Sang-Gyu Kim;Dae-Wi Kim;Hoon Jang
    • 한국발생생물학회지:발생과생식
    • /
    • 제26권4호
    • /
    • pp.145-153
    • /
    • 2022
  • The gut microbiota is involved in the maintenance of physiological homeostasis and is now recognized as a regulator of many diseases. Although germ-free mouse models are the standard for microbiome studies, mice with antibiotic-induced sterile intestines are often chosen as a fast and inexpensive alternative. Pathophysiological changes in the gut microbiome have been demonstrated, but there are no reports so far on how such alterations affect the bacterial composition of the uterus. Here we examined changes in uterine microbiota as a result of gut microbiome disruption in an antibiotics-based sterile-uterus mouse model. Sterility was induced in 6-week-old female mice by administration of a combination of antibiotics, and amplicons of a bacteria marker gene (16S rRNA) were sequenced to decipher bacterial community structures in the uterus. At the phylum-level, Proteobacteria, Firmicutes, and Actinobacteria were found to be dominant, while Ralstonia, Escherichia, and Prauserella were the major genera. Quantitative comparisons of the microbial contents of an antibiotic-fed and a control group revealed that the treatment resulted in the reduction of bacterial population density. Although there was no significant difference in bacterial community structures between the two animal groups, β-diversity analysis showed a converged profile of uterus microbiotain the germ-free model. These findings suggest that the induction of sterility does not result in changes in the levels of specific taxa but in a reduction of individual variations in the mouse uterus microbiota, accompanied by a decrease in overall bacterial population density.

Modulation of Pro-inflammatory and Anti-inflammatory Cytokines in the Fat by an Aloe Gel-based Formula, QDMC, Is Correlated with Altered Gut Microbiota

  • Jinho An;Heetae Lee;Sungwon Lee;Youngcheon Song;Jiyeon Kim;Il Ho Park;Hyunseok Kong;Kyungjae Kim
    • IMMUNE NETWORK
    • /
    • 제21권2호
    • /
    • pp.15.1-15.10
    • /
    • 2021
  • Abnormal inflammatory responses are closely associated with intestinal microbial dysbiosis. Oral administration of Qmatrix-diabetes-mellitus complex (QDMC), an Aloe gel-based formula, has been reported to improve inflammation in type 2 diabetic mice; however, the role of the gut microbiota in ameliorating efficacy of QDMC remains unclear. We investigated the effect of QDMC on the gut microbiota in a type 2 diabetic aged mouse model that was administered a high-fat diet. Proinflammatory (TNF-α and IL-6) and anti-inflammatory (IL-4 and IL-10) cytokine levels in the fat were normalized via oral administration of QDMC, and relative abundances of Bacteroides, Butyricimonas, Ruminococcus, and Mucispirillum were simultaneously significantly increased. The abundance of these bacteria was correlated to the expression levels of cytokines. Our findings suggest that the immunomodulatory activity of QDMC is partly mediated by the altered gut microbiota composition.

Simotang Alleviates the Gastrointestinal Side Effects of Chemotherapy by Altering Gut Microbiota

  • Deng, Lijing;Zhou, Xingyi;Lan, Zhifang;Tang, Kairui;Zhu, Xiaoxu;Mo, Xiaowei;Zhao, Zongyao;Zhao, Zhiqiang;Wu, Mansi
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권4호
    • /
    • pp.405-418
    • /
    • 2022
  • Simotang oral liquid (SMT) is a traditional Chinese medicine (TCM) consisting of four natural plants and is used to alleviate gastrointestinal side effects after chemotherapy and functional dyspepsia (FD). However, the mechanism by which SMT helps cure these gastrointestinal diseases is still unknown. Here, we discovered that SMT could alleviate gastrointestinal side effects after chemotherapy by altering gut microbiota. C57BL/6J mice were treated with cisplatin (DDP) and SMT, and biological samples were collected. Pathological changes in the small intestine were observed, and the intestinal injury score was assessed. The expression levels of the inflammatory factors IL-1β and IL-6 and the adhesive factors Occludin and ZO-1 in mouse blood or small intestine tissue were also detected. Moreover, the gut microbiota was analyzed by high-throughput sequencing of 16S rRNA amplicons. SMT was found to effectively reduce gastrointestinal mucositis after DDP injection, which lowered inflammation and tightened the intestinal epithelial cells. Gut microbiota analysis showed that the abundance of the anti-inflammatory microbiota was downregulated and that the inflammatory microbiota was upregulated in DDP-treated mice. SMT upregulated anti-inflammatory and anticancer microbiota abundance, while the inflammatory microbiota was downregulated. An antibiotic cocktail (ABX) was also used to delete mice gut microbiota to test the importance of gut microbiota, and we found that SMT could not alleviate gastrointestinal mucositis after DDP injection, showing that gut microbiota might be an important mediator of SMT treatment. Our study provides evidence that SMT might moderate gastrointestinal mucositis after chemotherapy by altering gut microbiota.

Changes of Mouse Gut Microbiota Diversity and Composition by Modulating Dietary Protein and Carbohydrate Contents: A Pilot Study

  • Kim, Eunjung;Kim, Dan-Bi;Park, Jae-Yong
    • Preventive Nutrition and Food Science
    • /
    • 제21권1호
    • /
    • pp.57-61
    • /
    • 2016
  • Dietary proteins influence colorectal cancer (CRC) risk, depending on their quantity and quality. Here, using pyrosequencing, we compared the fecal microbiota composition in Balb/c mice fed either a normal protein/carbohydrate diet (ND, 20% casein and 68% carbohydrate) or a high-protein/low-carbohydrate diet (HPLCD, 30% casein and 57% carbohydrate). The results showed that HPLCD feeding for 2 weeks reduced the diversity and altered the composition of the microbiota compared with the ND mice, which included a decrease in the proportion of the family Lachnospiraceae and Ruminococcaceae and increases in the proportions of the genus Bacteroides and Parabacteroides, especially the species EF09600_s and EF604598_s. Similar changes were reported in patients with inflammatory bowel disease, and in mouse models of CRC and colitis, respectively. This suggests that HPLCD may lead to a deleterious luminal environment and may have adverse effects on the intestinal health of individuals consuming such a diet.

Anti-Inflammatory Effect of Korean Soybean Sauce (Ganjang) on Mice with Induced Colitis

  • Hyeon-Ji Lim;In-Sun Park;Ji Won Seo;Gwangsu Ha;Hee-Jong Yang;Do-Youn Jeong;Seon-Young Kim;Chan-Hun Jung
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권7호
    • /
    • pp.1501-1510
    • /
    • 2024
  • Inflammatory bowel disease (IBD), characterized by chronic inflammation of the gut, is caused by several factors. Among these factors, microbial factors are correlated with the gut microbiota, which produces short-chain fatty acids (SCFAs) via anaerobic fermentation. Fermented foods are known to regulate the gut microbiota composition. Ganjang (GJ), a traditional fermented Korean soy sauce consumed worldwide, has been shown to exhibit antioxidant, anticancer, anti-colitis, and antihypertensive activities. However, its effects on the gut microbiota remain unknown. In the present study, we aimed to compare the anti-inflammatory effects of GJ manufactured using different methods and investigate its effect on SCFA production in the gut. To evaluate the anti-inflammatory effects of GJ in the gut, we performed animal experiments using a mouse model of dextran sulfate sodium (DSS)-induced colitis. All GJ samples attenuated DSS-induced colitis symptoms, including reduced colonic length, by suppressing the expression of inflammatory cytokines. In addition, GJ administration modulated SCFA production in the DSS-induced colitis model. Overall, GJ exerted anti-inflammatory effects by reducing DSS-induced symptoms via regulation of inflammation and modulation of SCFA levels in a DSS-induced colitis model. Thus, GJ is a promising fermented food with the potential to prevent IBD.