• Title/Summary/Keyword: Mounting frame

Search Result 44, Processing Time 0.023 seconds

Strength Analysis of Die-cast Aluminum-alloy Brake Pedals for use in Lightweight Cars (자동차 경량화를 위한 다이캐스팅용 알루미늄합금 브레이크 페달의 강도해석)

  • Cho, Seunghyun;Jang, Junyoung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.2
    • /
    • pp.138-142
    • /
    • 2016
  • In this study, a strength analysis was performed to assess die-cast aluminum alloy brake pedals as an improved alternative to wrought alloys. Aluminum brake pedal shapes are considered to be suitable for the die-casting process. The strength criterion of Volvo trucks was used as the criterion for the pedal strength. The results of this analysis showed that the frame thickness of the aluminum brake pedal must be increased from 12 mm to 18 mm to have a strength superior to that of a steel brake pedal. Additionally, the stress and weight of the aluminum brake pedal were found to be approximately 24% and 26% lower than those of the steel brake pedal, respectively. Mounting tests and strength assessments verified that the proposed die-cast aluminum alloy brake pedal demonstrated sufficient strength.

Development of the Traction Motor for High Speed Train (한국형 고속전철용 견인전동기 개발)

  • 이상우;윤종학;최종묵;박계서
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.427-433
    • /
    • 2002
  • An inverter-driven induction motor is usually adapted to the traction motor for a high speed drive system requiring safety, reliability, performance, compact size owing to the space and weight alloted for attaching to train, etc. and AC Traction motor for G7 train will be operated in the worst condition such as mechanical vibration, limited mounting space, severe thermal stress, inverter with non-sinusoidal voltage waveform, dust and so on. therefore, design procedure must be carefully carried out wi th considering the motor size, vibration and thermal expansion of rotor bars, insulation system, reliability of frame, as well as output characteristics. In this paper, we will inform the characteristics and design of the traction motor for G7 train and also analyze the test result of it.

  • PDF

Strength Analysis of Luggage Intrusion into Recreational Vehicle Seat (RV 차량 시트의 적재물 침입 강도해석)

  • Bae Jinwoo;Kang Sungjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.160-166
    • /
    • 2005
  • In recent, recreational vehicles, which efficiently provide wide inner space for various utilities, are highly preferred in automobile market. Though those vehicles enable to load much luggage in space behind the last seat, in case of frontal impact with high velocity the luggage strongly collides into the seat back and the passengers in. the last seat could be severely injured. Therefore, high strength against luggage intrusion is required for the last seat, and it is regulated by law of ECE R17. In this study, for a recreational vehicle under developing, an analysis technique for simulating seat crash in accordance with luggage intrusion test of ECE R17 was investigated. The results exhibited good correlation with the test ones.

A Study on the impact on the quality of hemming the number of hemming process (중소형 회로 차단기에 적용 가능한 한류 메커니즘의 개발)

  • Lee, Je-Duk;Park, Jong-Sik;Im, Jae-Guk;Park, Dong-Hee;Park, Min-Ho;Choi, Kye-Kwang;Kim, Sei-Hwan;Yun, Jae-Woong;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.10 no.1
    • /
    • pp.41-45
    • /
    • 2016
  • Electrical equipment in factories, buildings, etc. with the development of the industry has become a large capacity. By the development, electric load also become diversified and there is also highly functional requirements being electrical equipment. Particularly in the small and medium-sized circuit breakers, tend to preferentially consider the economy stands out and improvements in safety, ease of mounting and connection through the modularity of the basic dimensions compact and cost to block expansion of the scope of the development of capacity, etc. The product having a competitive has been strongly required. In order to implement the circuit breakers of breaking capacity and compact at the same time taking into account the economic development of this technology applied to the current-limiting mechanism is essential budget or the current limiting mechanism is currently available mechanisms applicable to small and medium-sized frame (frame) can not do it. In this paper, at the same time satisfying the economic efficiency, by minimizing the load force of the moving contactor (moving contactor) to be applied to small and medium frame other hand to secure the economical efficiency without using high speed contact parting acceleration of the moving contactor conventional current-limiting mechanism, and to develop a current-limiting mechanism that can be satisfied with the same or higher performance to meet the needs of the market.

A Study on the Modal Characteristics of a Large-sized Military Truck (군용 대형트럭의 고유 진동 특성에 관한 연구)

  • Suh, Kwon-Hee;Lim, Hyeon-Vin;Song, Bu-Geun;Chang, Hun-Sub;Yoo, Woong-Jae;Oh, Cheol-Jo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.130-137
    • /
    • 2010
  • Due to test facility and specialty, it is physically difficult to conduct the modal tests of large-sized structures such as truck, bus and airplane. So, in case of a large-sized truck, the mode analysis on a full vehicle model comprised of reliable cabin, frame, and deck has been generally performed. However, the reliability of overall vibrational characteristics of the analytic model has not been fairly guaranteed by the testified models of each subsystem owing to the existence of cab suspension and the nonlinear mounting between a chassis frame and a special deck system. In this paper, a method to find out the modal characteristics of a large-sized military truck is presented. New modal test equipment is developed to set the boundary conditions of three military truck variants as close as a free-free condition. And the mode analysis method using coupled structure and dynamic models is established to consider the above-mentioned dynamic non-linearities of the vehicle itself. The usefulness of the suggested method is verified by comparing with the modal test results. Finally, the modal parameters of the final variant are extracted using the proved analytic method.

Critical Cleaning Requirements for Back End Wafer Bumping Processes

  • Bixenman, Mike
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.57-64
    • /
    • 2000
  • As integrated circuits become more complex, the number of I/O connections per chip grow. Conventional wire-bonding, lead-frame mounting techniques are unable to keep up. The space saved by shrinking die size is lost when the die is packaged in a huge device with hundreds of leads. The solution is bumps; gold, conductive adhesive, but most importantly solder bumps. Virtually every semiconductor manufacturer in the world is using or planning to use bump technology fur their larger and more complex devices. Several wafer-bumping processes used in the manufacture of bumped wafer. Some of the more popular techniques are evaporative, stencil or screen printing, electroplating, electrodes nickel, solder jetting, stud bumping, decal transfer, punch and die, solder injection or extrusion, tacky dot process and ball placement. This paper will discuss the process steps for bumping wafers using these techniques. Critical cleaning is a requirement for each of these processes. Key contaminants that require removal are photoresist and flux residue. Removal of these contaminants requires wet processes, which will not attack, wafer metallization or passivation. research has focused on enhanced cleaning solutions that meet this critical cleaning requirement. Process parameters defining time, temperature, solvency and impingement energy required to solvate and remove residues from bumped wafers will be presented herein.

  • PDF

Critical Cleaning Requirements for Back End Wafer Bumping Processes

  • Bixenman, Mike
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.1
    • /
    • pp.51-59
    • /
    • 2000
  • As integrated circuits become more complex, the number of I/O connections per chip grow. Conventional wire-bonding, lead-frame mounting techniques are unable to keep up. The space saved by shrinking die size is lost when the die is packaged in a huge device with hundreds of leads. The solution is bumps; gold, conductive adhesive, but most importantly solder bumps. Virtually every semiconductor manufacturer in the world is using or planning to use bump technology for their larger and more complex devices. Several wafer-bumping processes used in the manufacture of bumped wafer. Some of the more popular techniques are evaporative, stencil or screen printing, electroplating, electroless nickel, solder jetting, stud humping, decal transfer, punch and die, solder injection or extrusion, tacky dot process and ball placement. This paper will discuss the process steps for bumping wafers using these techniques. Critical cleaning is a requirement for each of these processes. Key contaminants that require removal are photoresist and flux residue. Removal of these contaminants requires wet processes, which will not attack, wafer metallization or passivation. Research has focused on enhanced cleaning solutions that meet this critical cleaning requirement. Process parameters defining time, temperature, solvency and impingement energy required to solvate and remove residues from bumped wafers will be presented herein.

  • PDF

Design of Structure of Heliostat Reflective Surface for 200kW Tower Type Solar Thermal Power Plant (200kW 탑형 태양열발전시스템을 위한 Heliostat 반사면 구조 설계)

  • Park, Young-Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.53-62
    • /
    • 2011
  • Heliostat in the tower type solar thermal power plant is a sun tracking mirror system to reflect the solar energy to the receiver and the optical performance of it affects to the efficiency of whole power plant most significantly. Thus a proper design of structure of the heliostat reflective surface could be the most important step in the construction of such power plant. The work presented here is a design of structure of optical surface of heliostat, which will be used in 200kW solar thermal power plant. The receiver located at 43(m) high from ground in tower has $2{\times}2$(m) rectangular shape. We first developed the software tool to simulate the energy concentration characteristics of heliostat using the ray tracing technique. Then, the shape of heliostat reflective surface is designed with the consideration of heliostat's energy concentration characteristics, production cost and productivity. The designed heliostat's reflective surface has a structure formed by canting four of $1{\times}1$(m) rectangular flat plate mirror facet and the center of each mirror facet is located on the spherical surface, where the spherical surface is formulated by the mirror facet mounting frame.

Method for Manufacturing Single Prong Pendant Jewelry Using Trench Process (트렌치 공정을 이용한 단발난집 펜던트 주얼리의 개발)

  • 송오성;김익환;이하연
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.2
    • /
    • pp.7-10
    • /
    • 2001
  • Recently, most jewelry design employ multiple prongs that grasp the front surface of the jewel to the metal frame To keep up with recent trends in fashion. jewelry manufacturers need to produce single-prong neckalces and earings constructed with non-precious metals. In responce to this demand, Ameth Development Division and The University of Seoul researched jointly and developed a technique for setting the jewel safely using a single prong with less weight. The setting process consists of making a small trench through the jewel at the mounting point and using a low melting point tin solder, to fill the trench and bonding with the prong. The application or this technology in the setting of a natural amethyst to a single 18K gold prong resulted in a 40% reduction in cost and weight and improvement of feeling for wearing.

  • PDF

Seismic Response Prediction of a Structure Using Experimental Modal Parameters from Impact Tests (충격시험에 의한 실험모드특성을 이용한 구조물의 지진응답 예측)

  • Cho, Sung-Gook;Joe, Yang-Hee;So, Gi-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.75-84
    • /
    • 2010
  • An in-cabinet response spectrum should be generated to perform the seismic qualification of devices and instruments mounted inside safety-related electrical equipment installed in nuclear power plants. The response spectrum is available by obtaining accurate seismic responses at the device mounting location of the cabinet. The dynamic behavior of most of electrical equipment may not be easily analyzed due to their complex mass and stiffness distributions. Considering these facts, this study proposes a procedure to estimate the seismic responses of a structure by a combination of a test and subsequent analysis. This technique firstly constructs the modal equations of the structure by using the experiment modal parameters obtained from the impact test. Then the seismic responses of the structure may be calculated by a mode superposition method. A simple steel frame structure was fabricated as a specimen for the validation of the proposed method. The seismic responses of the specimen were estimated by using the proposed technique and compared with the measurements obtained from the shaking table tests. The study results show that it is possible to accurately estimate the seismic response of the structure by using the experimental modal parameters obtained from the impact test.