• 제목/요약/키워드: Motors

검색결과 3,608건 처리시간 0.031초

복합 링크기구를 이용한 다족 보행로봇 (Multi-legged Walking Robot Using Complex Linkage Structure)

  • 임상현;이동훈;강현창;김상현
    • 한국기계가공학회지
    • /
    • 제20권11호
    • /
    • pp.74-79
    • /
    • 2021
  • Generally, multi-legged walking robots have excellent mobility in rough and uneven terrain, and they are deployed for the safety of rescuers in various disaster environments. However, as each leg is driven by a number of actuators, it leads to a complicated structure and high power consumption; therefore, it is difficult to put them into practical use. In this article, a new concept is proposed of a walking robot whose legs are driven by a complex linkage structure to overcome the deficiencies of conventional multi-legged walking robots. A double crank-rocker mechanism is proposed, making it possible for one DC motor to actuate the left and right movements of two neighboring thighs of the multi-legged walking robot. Each leg can also move up and down through an improved cam structure. Finally, each mechanism is connected by spur and bevel gears, so that only two DC motors can drive all legs of the walking robot. The feasibility of the designed complex linkage mechanism was verified using the UG NX program. It was confirmed through actual production that the proposed multi-legged walking robot performs the desired motion.

35㎛ 점탄성수지가 적용된 1.035mm 제진강판의 이종소재간 저항점용접 특성분석 (Characteristic Analysis of Resistance Spot Welding between Dissimilar Materials of 1.035mm Laminated Vibration Damping Steel with 35㎛ Viscoelastic Resin)

  • 배기만;백종진;신창열;김승경;강명창
    • 한국기계가공학회지
    • /
    • 제20권12호
    • /
    • pp.24-29
    • /
    • 2021
  • Recently, owing to the high demand for eco-friendly cars in the automotive industry, noise and vibrations have become major challenges. The use of laminated damping steel is increasing in response to these demands. Laminated damping steel is primarily used in sound insulation plates. The vibration energy is converted into thermal energy due to the viscoelastic resin being located between two steel sheets and being able to damp the vibrations when an external force, such as, noise or vibration is applied to the steel plate. Laminated damping steel is chiefly applied to dash panels in automotive body parts, and because of its structure, junction technology for bonding with other components is necessary. However, there has not been sufficient research conducted on junctions. In this study, regardless of the electrode shape, in the range of 4.0 ~ 8.0 kA welding current, the same welding force and welding time were applied which were 2.8 kN and 200 m/s (12 cycles) and the tensile shear load and nugget size were analyzed after the resistance spot welding between different materials of laminated damping steel with a thickness of 1.035 mm. The results show that in the range of 5 ~ 8 kA welding current, 1.035 mm laminated damping steel meets the MS181-15 standard, which is the technical standard of Hyundai-Kia Motors.

몰리브덴 스퍼터링 처리 의류소재의 열적 특성과 전기적 특성에 관한 연구 (A study on thermal and electrical properties of molybdenum sputtered clothing materials)

  • 한혜리
    • 복식문화연구
    • /
    • 제30권1호
    • /
    • pp.88-101
    • /
    • 2022
  • Molybdenum is used in electrical contacts, industrial motors, and transportation materials due to its remarkable ability to resist heat and corrosion. It is also used to flame coat other metals. This study investigated, the thermal characteristics of the molybdenum sputtered material, such as electrical conductivity, and stealth effects on infrared thermal imaging cameras. To this end, molybdenum sputtered samples were prepared by varying the density of the base sample and the type of base materials used. Thereafter, the produced samples were evaluated for their surface state, electrical conductivity, electromagnetic field characteristics, thermal characteristics, stealth effect on infrared thermal imaging cameras, and moisture characteristics. As a result of infrared thermal imaging, the molybdenum layer was directed towards the outside air, and when the sample was a film, it demonstrated a greater stealth effect than the fabric. When the molybdenum layer was directed to the outside air, all of the molybdenum sputtering-treated samples exhibited a lower surface temperature than the "untreated sample." In addition, as a result of confirming electrical properties following the molybdenum sputtering treatment, it was determined that the film exhibited better electrical conductivity than the fabric. All samples that were subjected to molybdenum sputtering exhibited significantly reduced electromagnetic and IR transmission. As a result, the stealth effect on infrared thermal imaging cameras is considered to be a better way of interpreting heat transfer than infrared transmission. These results are expected to have future applications in high-performance smartwear, military uniforms, and medical wear.

ISO TC 298에서의 희토류 재활용 관련 국제 표준화 현황 (Standardization Status of Rare Earth Elements Recycling in ISO TC 298)

  • 이미혜;송요셉;온지선;윤승환;한문환;김범성;김택수;이빈
    • 한국분말재료학회지
    • /
    • 제29권2호
    • /
    • pp.159-165
    • /
    • 2022
  • Rare earth elements, which are important components of motors, are in high demand and thus constantly get more expensive. This tendency is driven by the growth of the electric vehicle market, as well as environmental issues associated with rare-earth metal manufacturing. TC 298 of the ISO manages standardization in the areas of rare-earth recycling, measurement, and sustainability. Korea, a resource-poor country, is working on international standardization projects that focus on recycling and encouraging the domestic adoption of international standards. ITU-T has previously issued recommendations regarding the recycling of rare-earth metals from e-waste. ISO TC 298 expands on the previous recommendations and standards for promoting the recycling industry. Recycling-related rare earth standards and drafts covered by ISO TC 298, as well as Korea's strategies, are reviewed and discussed in this article.

교류 전동기 구동을 위한 IPM(Intelligent Power Module) IGBT 스위치 성능 분석 방법 개발 (Development of IPM(Intelligent Power Module) IGBT switch performance evaluation system for the driving of the A.C. motor)

  • 최중경
    • 한국정보전자통신기술학회논문지
    • /
    • 제15권4호
    • /
    • pp.291-297
    • /
    • 2022
  • 본 논문은 가전용 교류 전동기 구동을 위한 인버터 회로에 포함된 지능형 스위칭 모듈인 IPM 모듈에 대한 특성 및 신뢰성 계측 회로 설계 방법에 대한 연구이다. IPM은 전동기 구동기의 핵심 부품으로 그 스위칭 특성이 서보 구동 중에 일관되게 유지돼야 한다. 그 특성 중 스위치 온 특성을 결정하는 콜렉터-에미터간 도통 전압 Vce(on) 특성이 중요하다. 인버터 구성의 핵심 부품인 IPM은 여러 브랜드의 제품이 생산되고 있기 때문에 응용시스템의 최적 성능을 위해서는 IPM의 제품군에 따른 IGBT 스위치의 콜렉터-에미터간 도통 전압 Vce(on) 값을 측정하기 위한 방법 및 계측 평가 시스템이 필요하다. 제안된 방법은 제조사별 IPM이 전동기 구동회로에 장착된 상태에서 부하에 따른 Vce(on) 값을 계측 평가할 수 있는 새로운 방법으로 사용자 회사 입장에서는 중요한 설비가 될 수 있다.

전기자동차의 에너지 및 전기 요소기술을 선도하는 인력양성 알고리즘 (Human Resource Nurturing Algorithm Leading the Energy and Electric Element Technology of Electric Vehicles)

  • 윤용호
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권1호
    • /
    • pp.181-186
    • /
    • 2022
  • 세계 전기자동차 분야는 기술적 환경변화를 넘어서 시장 환경에까지 영향을 미치는 단계로 전환하여 완성차업체들은 "기술 우위 → 브랜드 제고 → 기존 내연기관 차량의 판매 확대"라는 기존 전략에서 시장경쟁력 제고라는 전기자동차 시장 자체의 확대로 전환되고 있다. 또한 전기자동차 부품시장은 기존 부품업체들의 사업영역 확대와 신규업체들의 진입으로 경쟁이 심화될 전망이며, 전기자동차 주요 부품의 효율성 향상을 위해 개발 협력도 활발히 진행될 전망이다. 이러한 전망과 함께 전기자동차가 성장할수록 자동차 산업의 전반적인 구조적 변화가 예상됨에 따라 배터리, 파워트레인(모터, 전력관리 제어시스템), 전기차 생산, 충전 인프라 등 전기자동차 Value Chain 전반의 성장이 예상된다. 따라서 본 논문에서는 변화되고 있는 전기자동차 산업의 발맞춰 기업이 원하는 다양한 고급인력을 양성하기 위해 전기자동차의 에너지 및 전기 요소기술을 선도하는 인력양성 알고리즘을 연구한다.

고속 전동기용 2 패드 빔 타입 가스 포일 저널 베어링의 회전체동역학 성능 측정 (Rotordynamic Performance Measurements of a Two-Pad Beam-Type Gas Foil Journal Bearing for High Speed Motors)

  • 정권종;황성호;백두산;김태영;김태호
    • Tribology and Lubricants
    • /
    • 제38권5호
    • /
    • pp.205-212
    • /
    • 2022
  • This paper presents experimental measurements of the structural characteristics of a two-pad beam-type gas foil journal bearing and its rotordynamic performance for a high-speed motor-driven turbocompressor. The test bearing had two top foils and two beam foils, each with an arc length of ~180°. Each beam foil was etched to obtain 40 beams with six geometries of different lengths and widths. The insertion of beam foils into the bearing housing produces equivalent beam heights. The structural tests of the bearing with a non-rotating journal revealed a smaller bearing clearance and larger structural stiffness for the load-on-pad configuration than for the load-between-pads configuration. Rotordynamic performance measurements during driving tests up to 100 krpm demonstrated synchronous vibrations and subsynchronous vibrations with large amplitudes. The test was repeated after inserting the shim between the top foil and beam foil to reduce the bearing radial clearance. The reduced bearing clearance resulted in a reduction in the peak amplitude of the synchronous vibrations and an increase in the speed at which the peak amplitude occurred. In addition, the onset speed and amplitude of the subsynchronous vibrations were dramatically increased and diminished, respectively. The rotor coast-down tests at 100 krpm show that the reduction in the bearing clearance extends the time to rotor stop, thus implying an improvement in hydrodynamic pressure generation and a reduction in bearing frictional torque.

Optimization of VIGA Process Parameters for Power Characteristics of Fe-Si-Al-P Soft Magnetic Alloy using Machine Learning

  • Sung-Min, Kim;Eun-Ji, Cha;Do-Hun, Kwon;Sung-Uk, Hong;Yeon-Joo, Lee;Seok-Jae, Lee;Kee-Ahn, Lee;Hwi-Jun, Kim
    • 한국분말재료학회지
    • /
    • 제29권6호
    • /
    • pp.459-467
    • /
    • 2022
  • Soft magnetic powder materials are used throughout industries such as motors and power converters. When manufacturing Fe-based soft magnetic composites, the size and shape of the soft magnetic powder and the microstructure in the powder are closely related to the magnetic properties. In this study, Fe-Si-Al-P alloy powders were manufactured using various manufacturing process parameter sets, and the process parameters of the vacuum induction melt gas atomization process were set as melt temperature, atomization gas pressure, and gas flow rate. Process variable data that records are converted into 6 types of data for each powder recovery section. Process variable data that recorded minute changes were converted into 6 types of data and used as input variables. As output variables, a total of 6 types were designated by measuring the particle size, flowability, apparent density, and sphericity of the manufactured powders according to the process variable conditions. The sensitivity of the input and output variables was analyzed through the Pearson correlation coefficient, and a total of 6 powder characteristics were analyzed by artificial neural network model. The prediction results were compared with the results through linear regression analysis and response surface methodology, respectively.

Stress and fatigue analysis of major components under dynamic loads for a four-row tractor-mounted radish collector

  • Khine Myat Swe;Md Nasim Reza;Milon Chowdhury;Mohammod Ali;Sumaiya Islam;Sang-Hee Lee;Sun-Ok Chung;Soon Jung Hong
    • 농업과학연구
    • /
    • 제49권2호
    • /
    • pp.269-284
    • /
    • 2022
  • The development of radish collectors has the potential to increase radish yields while decreasing the time and dependence on human labor in a variety of field activities. Stress and fatigue analyses are essential to ensure the optimal design and machine life of any agricultural machinery. The objectives of this research were to analyze the stress and fatigue of major components of a tractor-mounted radish collector under dynamic load conditions in an effort to increase the design dependability and dimensions of the materials. An experiment was conducted to measure the shaft torque of stem-cutting and transferring conveyor motors using rotary torque sensors at different tractor ground speeds with and without a load. The Smith-Watson-Topper mean stress equation and the rain-flow counting technique were utilized to determine the required shear stress with the distribution of the fatigue life cycle. The severity of the operation was assessed using Miner's theory. All running conditions produced more than 107 of high cycle fatigue strength. Furthermore, the highest severity levels for motor shafts used for stem cutting and transferring and for transportation joints and cutting blades were 2.20, 4.24, 2.07, and 1.07, and 1.97, 3.81, 1.73, and 1.07, respectively, with and without a load condition, except for 5.24 for a winch motor shaft under a load. The stress and fatigue analysis presented in this study can aid in the selection of the most appropriate design parameters and material sizes for the successful construction of a tractor-mounted radish collector, which is currently under development.

Delay and Doppler Profiler based Channel Transfer Function Estimation for 2×2 MIMO Receivers in 5G System Targeting a 500km/h Linear Motor Car

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • 제23권9호
    • /
    • pp.8-16
    • /
    • 2023
  • In Japan, high-speed ground transportation service using linear motors at speeds of 500 km/h is scheduled to begin in 2027. To accommodate 5G services in trains, a subcarrier spacing frequency of 30 kHz will be used instead of the typical 15 kHz subcarrier spacing to mitigate Doppler effects in such high-speed transport. Furthermore, to increase the cell size of the 5G mobile system, multiple base station antennas will transmit identical downlink (DL) signals to form an expanded cell size along the train rails. In this situation, the forward and backward antenna signals are Doppler-shifted in opposite directions, respectively, so the receiver in the train may suffer from estimating the exact Channel Transfer Function (CTF) for demodulation. In a previously published paper, we proposed a channel estimator based on Delay and Doppler Profiler (DDP) in a 5G SISO (Single Input Single Output) environment and successfully implemented it in a signal processing simulation system. In this paper, we extend it to 2×2 MIMO (Multiple Input Multiple Output) with spatial multiplexing environment and confirm that the delay and DDP based channel estimator is also effective in 2×2 MIMO environment. Its simulation performance is compared with that of a conventional time-domain linear interpolation estimator. The simulation results show that in a 2×2 MIMO environment, the conventional channel estimator can barely achieve QPSK modulation at speeds below 100 km/h and has poor CNR performance versus SISO. The performance degradation of CNR against DDP SISO is only 6dB to 7dB. And even under severe channel conditions such as 500km/h and 8-path inverse Doppler shift environment, the error rate can be reduced by combining the error with LDPC to reduce the error rate and improve the performance in 2×2 MIMO. QPSK modulation scheme in 2×2 MIMO can be used under severe channel conditions such as 500 km/h and 8-path inverse Doppler shift environment.