Recent advances in computer science enabled people with severe motor disabilities to use brain-computer interfaces (BCI) for communication, control, and even to restore their motor disabilities. This paper reviews the most recent works of BCI in stroke rehabilitation with a focus on methodology that reported on data collected from stroke patients and clinical studies that reported on the motor improvements of stroke patients. Both types of studies are important as the former advances the technology of BCI for stroke, and the latter demonstrates the clinical efficacy of BCI in stroke. Finally some challenges are discussed.
Journal of the Institute of Electronics and Information Engineers
/
v.51
no.5
/
pp.197-206
/
2014
Motor imagery based Brain-computer Interface(BCI), which has recently attracted attention, is the technique for decoding the user's voluntary motor intention using Electroencephalography(EEG). For classifying the motor imagery, event-related desynchronization(ERD), which is the phenomenon of EEG voltage drop at sensorimotor area in ${\mu}$-band(8-13Hz), has been generally used but this method are not free from the performance degradation of the BCI system because EEG has low spatial resolution and shows different ERD-appearing band according to users. Common spatial pattern(CSP) was proposed to solve the low spatial resolution problem but it has a disadvantage of being very sensitive to frequency-band selection. Discriminative filter bank common spatial pattern(DFBCSP) tried to solve the frequency-band selection problem by using the Fisher ratio of the averaged EEG signal power and establishing discriminative filter bank(DFB) which only includes the feature frequency-band. However, we found that DFB might not include the proper filters showing the spatial pattern of ERD. To solve this problem, we apply a band-selection process using CSP feature vectors and linear discriminant analysis to DFBCSP instead of the averaged EEG signal power. The filter selection results and the classification accuracies of the existing and the proposed methods show that the CSP feature is more effective than signal power feature.
The brain-computer interface obtains a user's electroencephalogram as a replacement communication unit for the disabled such that the user is able to control machines by simply thinking instead of using hands or feet. In this paper, we propose a feature extraction method based on a non-selected filter by SBCSP to classify motor imagery EEG. First, we divide frequencies (4~40 Hz) into 4-Hz units and apply CSP to each Unit. Second, we obtain the FLD score vector by combining FLD results. Finally, the FLD score vector is projected onto the optimal plane for classification using PCA. We use BCI Competition III dataset IVa, and Extracted features are used as input for LS-SVM. The classification accuracy of the proposed method was evaluated using $10{\times}10$ fold cross-validation. For subjects 'aa', 'al', 'av', 'aw', and 'ay', results were $85.29{\pm}0.93%$, $95.43{\pm}0.57%$, $72.57{\pm}2.37%$, $91.82{\pm}1.38%$, and $93.50{\pm}0.69%$, respectively.
이 논문에서는 최근 활발히 연구되고 있는 BCI 실험에서 센서 위치의 변화에 따른 정확도 감소를 줄이는 방법을 알아본다. 이를 위해 특징추출 방법에서 많이 사용되는 두 가지 방법 (Power Spectrum Density, Phase Lock Value) 을 비교 및 평가 한다. motor imagery BCI 실험 결과 phase정보를 이용하는 Phase Lock Value가 달라지는 센서 위치에 덜 민감하다는 것을 확인할 수 있었다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.10a
/
pp.373-376
/
2004
최근에 뇌파를 이용하여 컴퓨터와 통신하거나 기기를 제어할 수 있는 이른바 뇌-컴퓨터 인터페이스BCI(Brain-Computer Interface)에 대한 연구가 대두되고 있다. 이러한 BCI 연구의 궁극적 목표는 다양한 정신상태에 따른 뇌파의 특성을 파악하여 컴퓨터나 기기 등을 제어하는 것이다. 본 논문에서는 움직임과 관련 있는 10~12Hz의 mu파 영역에서의 ERD/ERS를 계산하였고, 그 결과 왼쪽과 오른쪽 손의 움직임을 상상할 때에 운동과 관련된 기능이 집중되어 있는 일차운동영역(primary motor area)의 mu파에서 ERD/ERS의 차이가 나타남을 발견하였다 또한, RLS방법을 사용한 Adaptive Autoregressive Model 계수의 특징을 추출을 하였으며, 이를 신경망으로 학습시켜 인식률을 비교하였다.
Brain-computer interface (BCI) is a technology that controls computer and transmits intention by measuring and analyzing electroencephalogram (EEG) signals generated in multi-channel during mental work. At this time, optimal EEG channel selection is necessary not only for convenience and speed of BCI but also for improvement in accuracy. The optimal channel is obtained by removing duplicate(redundant) channels or noisy channels. This paper propose a dual filter-based channel selection method to select the optimal EEG channel. The proposed method first removes duplicate channels using Spearman's rank correlation to eliminate redundancy between channels. Then, using F score, the relevance between channels and class labels is obtained, and only the top m channels are then selected. The proposed method can provide good classification accuracy by using features obtained from channels that are associated with class labels and have no duplicates. The proposed channel selection method greatly reduces the number of channels required while improving the average classification accuracy.
Kim, Jin-Kwon;Kang, Dae-Hun;Lee, Young-Bum;Jung, Hee-Gyo;Lee, In-Su;Park, Hae-Dae;Kim, Eun-Ju;Lee, Myoung-Ho
Journal of Biomedical Engineering Research
/
v.30
no.5
/
pp.428-437
/
2009
The Performance research about EEG-BCI algorithm in BCI-naive subjects is very important for evaluating the applicability to the public. We analyzed the result of the performance evaluation experiment about the EEG-BCI algorithm in BCI-naive subjects on three different aspects. The EEG-BCI algorithm used in this paper is composed of the common spatial pattern(CSP) and the least square linear classifier. CSP is used for obtaining the characteristic of event related desynchronization, and the least square linear classifier classifies the motor imagery EEG data of the left hand or right hand. The performance evaluation experiments about EEG-BCI algorithm is conducted for 40 men and women whose age are 23.87${\pm}$2.47. The performance evaluation about EEG-BCI algorithm in BCI-naive subjects is analyzed in terms of the accuracy, the relation between the information transfer rate and the accuracy, and the performance changes when the different types of cue were used in the training session and testing session. On the result of experiment, BCI-naive group has about 20% subjects whose accuracy exceed 0.7. And this results of the accuracy were not effected significantly by the types of cue. The Information transfer rate is in the inverse proportion to the accuracy. And the accuracy shows the severe deterioration when the motor imagery is less then 2 seconds.
This paper presents a methodology for classifying left and right motor imagery using a neural network with weighted fuzzy membership functions (NEWFM) and wavelet-based feature extraction. Wavelet coefficients are extracted from electroencephalogram(EEG) signal by wavelet transforms in the first step. In the second step, sixty numbers of initial features are extracted from wavelet coefficients by the frequency distribution and the amount of variability in frequency distribution. The distributed non-overlap area measurement method selects the minimized number of features by removing the worst input features one by one, and then minimized six numbers of features are selected with the highest performance result. The proposed methodology shows that accuracy rate is 86.43% with six numbers of features.
To better delineate the changes in corticospinal excitability when older adults are asked to observe and/or imagine actions, 22 right-handed older adults without neurological abnormalities were included in this study. The amplitude and latency of motor evoked potentials (MEPs) by transcranial magnetic stimulation were recorded in the abductor pollicis brevis of the dominant hand during passive observation/imagery/active observation of slow/fast action of abduction of right thumb and also at resting state. Thus, active observation showed better changes than passive, but slow and fast action revealed no difference at all.
Kim, Da-Hye;Park, Wanjoo;Kim, Yun-Hee;Kim, Sung-Phil;Kim, Leahyun;Kwon, Gyu-Hyun
Proceedings of the Korea Information Processing Society Conference
/
2013.11a
/
pp.1661-1664
/
2013
본 연구는 만성 뇌졸중 환자 5 명을 대상으로 상지 운동(Affected hand의 주먹 쥐기/펴기운동)시 참가자의 운동의지와 운동 수행의 유무에 따라 차이가 있을 것을 가정하고, 운동 수행 및 운동의지가 존재하는 Active movement와 운동 수행을 하지만 운동의지가 없는 Passive movement, 운동 수행은 없지만 운동의지가 있는 Motor Imagery(MI)의 세가지 task에 따른 뇌파의 연결성을 비교하고자 한다. 이 때 EEG 영역 간의 연결성을 보기 위한 분석 방식 중 하나인 Phase locking value(PLV)를 통해 각 task 간의 차이를 비교 및 분석했다. 운동 수행은 동일하지만 운동의지 유무에 따른 차이는 Passive movement가 전반적으로 뇌 영역간 연결이 감소하고 Active movement가 motor task 시작 후 375ms를 기점으로 급격히 증가함을 보이는 데에서 발견할 수 있었으며, 운동 수행 유무에 따른 차이는 687.5ms 이후 Active movement에 비해 MI에서 뇌 영역 간 연결 수가 확연히 감소하는 데에서 큰 차이를 나타내었다. 이에 따라 본 연구에서는 만성 뇌졸중 환자의 상지운동 시의 motor task에 따른 EEG 영역간의 연결성을 토대로 운동의지 검출이 가능성이 있음을 밝혔다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.