Browse > Article
http://dx.doi.org/10.5626/JCSE.2013.7.2.139

Brain-Computer Interface in Stroke Rehabilitation  

Ang, Kai Keng (Institute for Infocomm and Research, Agency of Science, Technology and Research (A*STAR))
Guan, Cuntai (Institute for Infocomm and Research, Agency of Science, Technology and Research (A*STAR))
Publication Information
Journal of Computing Science and Engineering / v.7, no.2, 2013 , pp. 139-146 More about this Journal
Abstract
Recent advances in computer science enabled people with severe motor disabilities to use brain-computer interfaces (BCI) for communication, control, and even to restore their motor disabilities. This paper reviews the most recent works of BCI in stroke rehabilitation with a focus on methodology that reported on data collected from stroke patients and clinical studies that reported on the motor improvements of stroke patients. Both types of studies are important as the former advances the technology of BCI for stroke, and the latter demonstrates the clinical efficacy of BCI in stroke. Finally some challenges are discussed.
Keywords
Stroke; Rehabilitation; Brain-Computer Interface; Motor Imagery, Electroencephalography;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Shindo, K. Kawashima, J. Ushiba, N. Ota, M. Ito, T. Ota, A. Kimura, and M. G. Liu, "Effects of neurofeedback training with an electroencephalogram-based brain-computer interface for hand paralysis in patients with chronic stroke: a preliminary case series study," Journal of Rehabilitation Medicine, vol. 43, no. 10, pp. 951-957, 2011.   DOI
2 A. Biasiucci, R. Chavarriaga, B. Hamner, R. Leeb, F. Pichiorri, F. De Vico Fallani, D. Mattia, and J. R. del Millan, "Combining discriminant and topographic information in BCI: preliminary results on stroke patients," in Proceedings of the 5th International IEEE/EMBS Conference on Neural Engineering, Cancun, Mexico, 2011, pp. 290-293.
3 M. Gomez-Rodriguez, J. Peters, J. Hill, B. Schölkopf, A. Gharabaghi, and M. Grosse-Wentrup, "Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery," Journal of Neural Engineering, vol. 8, no. 3, p. 036005, 2011.   DOI   ScienceOn
4 I. K. Niazi, N. Jiang, O. Tiberghien, J. F. Nielsen, K. Dremstrup, and D. Farina, "Detection of movement intention from single-trial movement-related cortical potentials," Journal of Neural Engineering, vol. 8, no. 6, p. 066009, 2011.   DOI   ScienceOn
5 W. K. Tam, K. Y. Tong, F. Meng, and S. K. Gao, "A minimal set of electrodes for motor imagery BCI to control an assistive device in chronic stroke subjects: a multi-session study," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 19, no. 6, pp. 617-627, 2011.   DOI   ScienceOn
6 M. Arvaneh, C. Guan, K. K. Ang, and C. Quek, "Robust EEG channel selection across sessions in brain-computer interface involving stroke patients," in Proceedings of the IEEE International Joint Conference on Neural Networks, Brisbane, Australia, 2012, pp. 2319-2324.
7 M. Arvaneh, C. Guan, K. K. Ang, and C. Quek, "Omitting the intra-session calibration in EEG-based brain computer interface used for stroke rehabilitation," in Proceedings of the 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, 2012, pp. 4124-4127.
8 D. T. Bundy, M. Wronkiewicz, M. Sharma, D. W. Moran, M. Corbetta, and E. C. Leuthardt, "Using ipsilateral motor signals in the unaffected cerebral hemisphere as a signal platform for brain-computer interfaces in hemiplegic stroke survivors," Journal of Neural Engineering, vol. 9, no. 3, p. 036011, 2012.   DOI   ScienceOn
9 F. Cincotti, F. Pichiorri, P. Arico, F. Aloise, F. Leotta, F. D. Fallani, J. D. Millan, M. Molinari, and D. Mattia, "EEGbased brain-computer interface to support post-stroke motor rehabilitation of the upper limb," in Proceedings of the 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, 2012, pp. 4112-4115.
10 A. Frisoli, C. Loconsole, D. Leonardis, F. Banno, M. Barsotti, C. Chisari, and M. Bergamasco, "A new gaze-BCIdriven control of an upper limb exoskeleton for rehabilitation in real-world tasks," IEEE Transactions on Systems Man and Cybernetics Part C, vol. 42, no. 6, pp. 1169-1179, 2012.   DOI   ScienceOn
11 V. Kaiser, I. Daly, F. Pichiorri, D. Mattia, G. R. Muller-Putz, and C. Neuper, "Relationship between electrical brain responses to motor imagery and motor impairment in stroke," Stroke, vol. 43, no. 10, pp. 2735-2740, 2012.   DOI   ScienceOn
12 M. Arvaneh, C. Guan, K. K. Ang, and C. Quek, "Optimizing spatial filters by minimizing within-class dissimilarities in electroencephalogram-based brain-computer interface,"IEEE Transactions on Neural Networks and Learning Systems, vol. 24, no. 4, pp. 610-619, 2013.   DOI   ScienceOn
13 N. Sharma, L. H. Simmons, P. S. Jones, D. J. Day, T. A. Carpenter, V. M. Pomeroy, E. A. Warburton, and J. C. Baron, "Motor imagery after subcortical stroke: a functional magnetic resonance imaging study," Stroke, vol. 40, no. 4, pp. 1315-1324, 2009.   DOI   ScienceOn
14 S. H. Johnson, "Imagining the impossible: intact motor representations in hemiplegics," NeuroReport, vol. 11, no. 4, pp. 729-732, 2000.   DOI   ScienceOn
15 J. J. Shih, D. J. Krusienski, and J. R. Wolpaw, "Brain-computer interfaces in medicine," Mayo Clinic Proceedings, vol. 87, no. 3, pp. 268-279, 2012.   DOI   ScienceOn
16 S. H. Johnson, G. Sprehn, and A. J. Saykin, "Intact motor imagery in chronic upper limb hemiplegics: evidence for activity-independent action representations," Journal of Cognitive Neuroscience, vol. 14, no. 6, pp. 841-852, 2002.   DOI   ScienceOn
17 J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, "Brain-computer interfaces for communication and control," Clinical Neurophysiology, vol. 113, no. 6, pp. 767-791, 2002.   DOI   ScienceOn
18 J. J. Daly and J. R. Wolpaw, "Brain-computer interfaces in neurological rehabilitation," Lancet Neurology, vol. 7, no. 11, pp. 1032-1043, 2008.   DOI   ScienceOn
19 P. L. Jackson, M. F. Lafleur, F. Malouin, C. Richards, and J. Doyon, "Potential role of mental practice using motor imagery in neurologic rehabilitation," Archives of Physical Medicine and Rehabilitation, vol. 82, no. 8, pp. 1133-1141, 2001.   DOI   ScienceOn
20 L. F. Nicolas-Alonso and J. Gomez-Gil, "Brain computer interfaces: a review," Sensors, vol. 12, no. 2, pp. 1211-1279, 2012.   DOI
21 S. Silvoni, A. Ramos-Murguialday, M. Cavinato, C. Volpato, G. Cisotto, A. Turolla, F. Piccione, and N. Birbaumer, "Brain-computer interface in stroke: a review of progress," Clinical EEG and Neuroscience, vol. 42, no. 4, pp. 245-252, 2011.   DOI
22 S. Bonnie and R. Martin, "Understanding controlled trials: Why are randomised controlled trials important?," British Medical Journal, vol. 316, no. 7126, p. 201, 1998.   DOI   ScienceOn
23 G. Pfurtscheller, G. R. Muller, J. Pfurtscheller, H. J. Gerner, and R. Rupp, "'Thought': control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia," Neuroscience Letters, vol. 351, no. 1, pp. 33-36, 2003.   DOI   ScienceOn
24 V. L. Feigin, C. M. M. Lawes, D. A. Bennett, S. L. Barker-Collo, and V. Parag, "Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review," Lancet Neurology, vol. 8, no. 4, pp. 355-369, 2009.   DOI   ScienceOn
25 A. Mohapp, R. Scherer, C. Keinrath, P. Grieshofer, G. Pfurtscheller, and C. Neuper, "Single-trial EEG classification of executed and imagined hand movements in hemiparetic stroke patients," in Proceedings of the 3rd International Brain-Computer Interface Workshop and Training Course, Graz, Austria, 2006, pp. 80-81.
26 O. Bai, P. Lin, S. Vorbach, M. K. Floeter, N. Hattori, and M. Hallett, "A high performance sensorimotor beta rhythmbased brain-computer interface associated with human natural motor behavior," Journal of Neural Engineering, vol. 5, no. 1, pp. 24-35, 2008.   DOI   ScienceOn
27 R. Bene, N. Beck, B. Vajda, S. Popovic, K. Cosic, and V. Demarin, "Interface providers in stroke neurorehabilitation," Periodicum Biologorum, vol. 114, no. 3, pp. 403-407, 2012.
28 P. W. Duncan, L. B. Goldstein, D. Matchar, G. W. Divine, and J. Feussner, "Measurement of motor recovery after stroke: outcome assessment and sample size requirements," Stroke, vol. 23, no. 8, pp. 1084-1089, 1992.   DOI   ScienceOn
29 C. Calautti and J. C. Baron, "Functional neuroimaging studies of motor recovery after stroke in adults: a review," Stroke, vol. 34, no. 6, pp. 1553-1566, 2003.   DOI   ScienceOn
30 J. C. Grotta, E. A. Noser, T. Ro, C. Boake, H. Levin, J. Aronowski, and T. Schallert, "Constraint-induced movement therapy," Stroke, vol. 35, no. 11 (suppl 1), pp. 2699-2701, 2004.   DOI   ScienceOn
31 N. Sharma, V. M. Pomeroy, and J. C. Baron, "Motor imagery: a backdoor to the motor system after stroke?," Stroke, vol. 37, no. 7, pp. 1941-1952, 2006.   DOI   ScienceOn
32 A. P. Georgopoulos, J. T. Lurito, M. Petrides, A. B. Schwartz, and J. T. Massey, "Mental rotation of the neuronal population vector," Science, vol. 243, no. 4888, pp. 234-236, 1989.   DOI
33 Y. Kasashima, T. Fujiwara, Y. Matsushika, T. Tsuji, K. Hase, J. Ushiyama, J. Ushiba, and M. G. Liu, "Modulation of event-related desynchronization during motor imagery with transcranial direct current stimulation (tDCS) in patients with chronic hemiparetic stroke," Experimental Brain Research, vol. 221, no. 3, pp. 263-268, 2012.   DOI   ScienceOn
34 H. Y. Sun, Y. Xiang, and M. D. Yang, "Neurological rehabilitation of stroke patients via motor imaginary-based braincomputer interface technology," Neural Regeneration Research, vol. 6, no. 28, pp. 2198-2202, 2011.
35 K. K. Ang, C. Guan, K. S. Phua, C. Wang, I. Teh, C. W. Chen, and E. Chew, "Transcranial direct current stimulation and EEG-based motor imagery BCI for upper limb stroke rehabilitation," in Proceedings of the 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, 2012, pp. 4128-4131.
36 E. R. Buch, A. M. Shanechi, A. D. Fourkas, C. Weber, N. Birbaumer, and L. G. Cohen, "Parietofrontal integrity determines neural modulation associated with grasping imagery after stroke," Brain, vol. 135, pp. 596-614, 2012.   DOI
37 A. Caria, C. Weber, D. Brotz, A. Ramos, L. F. Ticini, A. Gharabaghi, C. Braun, and N. Birbaumer, "Chronic stroke recovery after combined BCI training and physiotherapy: a case report," Psychophysiology, vol. 48, no. 4, pp. 578-582, 2011.   DOI   ScienceOn
38 M. Takahashi, K. Takeda, Y. Otaka, R. Osu, T. Hanakawa, M. Gouko, and K. Ito, "Event related desynchronizationmodulated functional electrical stimulation system for stroke rehabilitation: a feasibility study," Journal of Neuroengineering and Rehabilitation, vol. 9, p. 56, 2012.   DOI
39 M. Mihara, N. Hattori, M. Hatakenaka, H. Yagura, T. Kawano, T. Hino, and I. Miyai, "Near-infrared spectroscopymediated neurofeedback enhances efficacy of motor imagery-based training in poststroke victims: a pilot study," Stroke, vol. 44, no. 4, pp. 1091-1098, 2013.   DOI   ScienceOn
40 B. Varkuti, C. Guan, Y. Pan, K. S. Phua, K. K. Ang, C. W. K. Kuah, K. Chua, B. Ti Ang, N. Birbaumer, and R. Sitaram, "Resting state changes in functional connectivity correlate With movement recovery for BCI and robot-assisted upper-extremity training after stroke," Neurorehabilitation and Neural Repair, vol. 27, no. 1, pp. 53-62, 2013.   DOI   ScienceOn
41 M. Naeem, C. Brunner, R. Leeb, B. Graimann, and G. Pfurtscheller, "Seperability of four-class motor imagery data using independent components analysis," Journal of Neural Engineering, vol. 3, no. 3, pp. 208-216, 2006.   DOI   ScienceOn
42 E. Buch, C. Weber, L. G. Cohen, C. Braun, M. A. Dimyan, T. Ard, J. Mellinger, A. Caria, S. Soekadar, A. Fourkas, and N. Birbaumer, "Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke," Stroke, vol. 39, no. 3, pp. 910-917, 2008.   DOI   ScienceOn
43 K. K. Ang, C. Guan, K. S. G. Chua, B. T. Ang, C. W. K. Kuah, C. Wang, K. S. Phua, Z. Y. Chin, and H. Zhang, "A clinical study of motor imagery-based brain-computer interface for upper limb robotic rehabilitation," in Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, 2009, pp. 5981-5984.
44 D. Broetz, C. Braun, C. Weber, S. R. Soekadar, A. Caria, and N. Birbaumer, "Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: a case report," Neurorehabilitation and Neural Repair, vol. 24, no. 7, pp. 674-679, 2010.   DOI
45 A. R. Fugl-Meyer, L. Jaasko, I. Leyman, S. Olsson, and S. Steglind, "The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance," Scandinavian Journal of Rehabilitation Medicine, vol. 7, no. 1, pp. 13-31, 1975.
46 J. J. Daly, R. Cheng, J. Rogers, K. Litinas, K. Hrovat, and M. Dohring, "Feasibility of a new application of noninvasive brain computer interface (BCI): a case study of training for recovery of volitional motor control after stroke," Journal of Neurologic Physical Therapy, vol. 33, no. 4, pp. 203-211, 2009.   DOI   ScienceOn
47 K. K. Ang, C. Guan, K. S. G. Chua, B. T. Ang, C. W. K. Kuah, C. Wang, K. S. Phua, Z. Y. Chin, and H. Zhang, "Clinical study of neurorehabilitation in stroke using EEGbased motor imagery brain-computer interface with robotic feedback," in Proceedings of the 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Buenos Aires, Argentina, 2010, pp. 5549-5552.
48 G. Prasad, P. Herman, D. Coyle, S. McDonough, and J. Crosbie, "Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study," Journal of Neuroengineering and Rehabilitation, vol. 7, no. 1, p. 60, 2010.   DOI   ScienceOn
49 K. K. Ang, C. Guan, K. S. G. Chua, B. T. Ang, C. W. K. Kuah, C. Wang, K. S. Phua, Z. Y. Chin, and H. Zhang, "A large clinical study on the ability of stroke patients to use EEG-based motor imagery brain-computer interface," Clinical EEG and Neuroscience, vol. 42, no. 4, pp. 253-258, 2011.   DOI