• Title/Summary/Keyword: Motion simulator

Search Result 384, Processing Time 0.029 seconds

Development of Simulator for Performance estimation of Above-Knee Prosthesis (대퇴의족 성능평가를 위한 시뮬레이터의 개발)

  • 오명환;송호진;윤용산;오준호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.432-432
    • /
    • 2000
  • The above-Knee Prosthesis has been used by the handicapped person and become a important part of their life. But uniform above-knee prosthesis only increases inconvenience And so the tool that can estimate and help to design of suitable prosthesis for user need to be developed. The simulator developed in this research is composed of two part. One is hardware that can realize various walking motions. The other is software that can display and analyze the results of walking mot ion. Three motors constitute hardware of Simulator. Two motors are used to realize heap motion that need two degree of freedom and the rest one used to realize swing motion. Software of Simulator display results of three motor trajectories and walking mot ion of hardware using computer graphic. Therefore, The simulator developed in this research which is able to realize human gait and results are analyzed through simulation program at PC will be some help to design and produce of prosthesis suitable to user.

  • PDF

Design of a Motion Recognition System for the Realistic Biathlon Simulator System (실감형 바이애슬론 시뮬레이터를 위한 동작 인식 시스템 설계)

  • Kim, Cheol-min;Lee, Min-tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.396-399
    • /
    • 2018
  • In this paper, we propose a motion recognition system for identification and interaction with simulator used in the realistic biathlon simulator. The proposed system tried to improve the motions data which is obstructed by the obstacles or overlapping joints and the motion due to the fast motion in the process of recognizing the various motion patterns in the biathlon. In this paper, we constructed a multi-camera motion recognition system based on IoT devices, and then we applied a skeletal area interpolation method for normal motion identification. We designed a system that can increase the recognition rate of motion from the biathlon. The proposed system can be applied to the analysis of snow sports motion and it will be used to develop realistic biathlon simulator system.

  • PDF

Motion Effects of the Ship on Crew Performance

  • Kim, Hongtae;Ha, Wook Hyun;Jang, Jun-Hyuk;Fang, Tae Hyun;Oh, Seungbin
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.333-340
    • /
    • 2013
  • Objective: The aim of this study is to provide a current knowledge of the multiple issues regarding motion effects on crew performance. Background: The motions of the ship may create motion sickness, nausea and vomit. Also, these motions also disturb the balance of crew members, increase the energy expenditure of crew for shipboard work, and result in increased levels of injury and fatigue. However, the motion effects of the ship on crew performance has not been thoroughly investigated. Method: Participants(N=10) were engaged in an experiment in 2 experimental environments(training ship and ship handling simulator) and 2 navigational conditions(day and night). The COP(Center of Pressure) data were recorded as an objective measure of postural balance control and the SSQ(Simulator Sickness Questionnaire) was used as a subjective measure of sickness. Results: The results showed that COP has a no significant difference based on experimental environments, but significant effect on SSQ. Conclusion: During the virtual simulator navigation, subjects showed significant SSQ level changes, which included decreased SSQ data. But, there is no significant difference of COP between training ship and ship handling simulator. Application: The results of this study could be applied to the next generation of ship design to decrease effect of motion at sea and to increase performance of ship crew.

Muscular Activity Analysis in Lower Limbs from Motion and Visual Information of Luge Simulator based Virtual Reality (가상현실 루지 시뮬레이터의 동작과 영상정보별 인체 근육활성도 분석)

  • Kang, Seung Rok;Kim, Ui Ryung;Kim, Kyung;Bong, Hyuk;Kwon, Tae Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.9
    • /
    • pp.825-831
    • /
    • 2015
  • In this paper, capture motion and visual information from a virtual reality luge simulator to analyze muscular activity in the lower limbs. The Luge Simulator consists of a motion platform with a pneumatic module for weight distribution. We recruited luge athletes and healthy subjects and made real-time surface EMG measurements to estimate the muscular activity in the lower limbs according to the motion protocol of a simulator, and a test was conducted for each subject. The results indicated that the rectus femoris had the highest muscular activity according to the level of the slope and velocity of the luge. The soleus muscle showed a high level of activity during a turn in the luge according to the direction. We found that the development of a virtual reality sports simulator based on physical reaction results could bring positive effects to optimize reality and human cenesthesia.

Comparisons of Pflugbogen's Biomechanical Characteristics to Develop Interactive Ski Simulator (체감형 스키 시뮬레이터 개발을 위한 플루크보겐 동작의 운동역학적 비교)

  • Koo, Do-Hoon;Lee, Min-Hyeon;Kweon, Hyo-Sun;Hyun, Bo-Ram;Eun, Seon-Deok
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.3
    • /
    • pp.189-199
    • /
    • 2014
  • The purpose of this study was to compare pflugbogen's biomechanical characteristics between on the ski simulator and snowed ski slope to develop interactive ski simulator. Nine ski instructors(sex: male, age: $29.6{\pm}5.4yrs$, height: $176.0{\pm}5.6cm$, body mass: $76.0{\pm}14.0kg$) belong to Korean Ski Instructors Association participated in this research. 24 Infrared cameras for snowed ski slope experiment and 13 infrared camera for ski simulator experiment were installed near by path of pflugbogen. The participants did pflugbogen on the snowed ski slope and the ski simulator both. During the experiment, the participants weared motion capture suit with infrared reflective makers on it, and plantar pressure sensors in ski boots, so that ski motion and plantar pressure data were collected together. Displacement of COG(center of gravity) movements, trunk flexion/extension angle, adduction/abduction angle, and plantar pressure data were significantly different between on the simulator and ski slope. However, percentage of time of COG movement in the phases during medial/lateral and anterior/posterior movement were not significantly different. Findings indicate that the difference between two groups occurred because the ski simulator's drive mechanism is different from ski motion on the slope. In order to develop the ski simulator more interactively for pflugbogen, the ski simulator's drive mechanism need to be reflected 3D motion data of pflugbogen on the slope that were purposed in this research.

Improvement of Washout Algorithm for Vehicle Driving Simulator Using Vehicle Tilt Data and Its Evaluation (차량 기울기값을 이용한 차량 시a레이터용 워시아웃 알고리즘에 대한 개선 및 평가)

  • Moon, Young-Geun;Kim, Moon-Sik;Kim, Kyung-Dal;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.823-830
    • /
    • 2009
  • For developing automotive parts and telematics devices the real car test often shows limitation because it needs high cost, much time and has the possibility of the accident. Therefore, a Vehicle Driving Simulator (VDS) instead of the real-car test has been used by some automotive manufactures, research centers, and universities. The VDS is a virtual reality device which makes a human being feel as if one drives a vehicle actually. Unlike actual vehicle, the simulator has limited kinematic workspace and bounded dynamic characteristics. So it is difficult to simulate dynamic motions of a multi-body vehicle model fully. In order to overcome these problems, a washout algorithm which restricts workspace of the simulator within the kinematic limits is needed, and analysis of dynamic characteristics is required also. However, a classical washout algorithm contains several problems such as time delay and generation of wrong motion signal caused by characteristics of filters. Specially, the classical washout algorithm has the simulator sickness when driver hardly turns brakes and accelerates the VDS. In this paper, a new washout algorithm is developed to enhance the motion sensitivity and improve the simulator sickness by using the vehicle tilt signal which is generated in the real time vehicle dynamic model.

Study on Estimation of Design Factors for 6 Degree-of-Freedom Simulator (6자유도 시뮬레이터의 설계인자 추정에 관한 연구)

  • Yoon, Jun-Seok;Song, Woo-Jin;Byun, Young-Seop;Ku, Tae-Wan;Kim, Jeong;Kang, Beom-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.447-456
    • /
    • 2010
  • The application of a reliable motion simulator can contribute effectively in the evaluation of the performance of a vehicle platform in the development stage of a small unmanned aerial vehicle (UAV). Therefore, the research on a reliable motion simulator can accelerate the development of UAV and decrease the relevant cost. In this paper, the design factors considered in the preliminary design stage of a 6 degree-of freedom motion simulator are defined and the motion range of the simulator is described on the basis of these design factors. The length, acceleration, and the required thrust of actuators with respect to the motion simulator under development are also predicted. The motion range can be increased and a suitable actuator can be selected and produced by applying these results in the manufacturing process of the motion simulator. Thus, the reliability of the motion simulators can be achieved during the actual design operation of the UAV.

Kinematical Analysis of Up-Down Motion in Ski Simulator (스키 시뮬레이터 업-다운 동작의 운동학적 분석)

  • Nam, Chang-Hyun;Woo, Byung-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.41-49
    • /
    • 2007
  • This study was to investigate the kinematical analysis using ski simulator. Twelve people(six skilled, six unskilled) participated in the experiment. Each phase of motion time was slight differences between the skilled group and the unskilled group but not significant difference in statistics. In displacement of vertical on COG(Center of Gravity), left and right down motion showed significant difference between group. In velocity of horizontal on COG, both left and right down motion showed significant difference between group, and up motion of between down motion showed significant difference. In displacement of angle on ankle, knee, hip joint almost showed significant difference between group. Almost in body position was lower skilled group than unskilled group.