• Title/Summary/Keyword: Motion of response

Search Result 2,148, Processing Time 0.03 seconds

Characteristics of Near Field Earthquakes and its effect on Seismic demands (Near Field 지진의 특징과 구조응답에 대한 영향)

  • 배미혜;권오성;한상환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.208-213
    • /
    • 2002
  • Near field ground motions contain distinct, large amplitude pulses in both velocity and displacement. This paper presents an investigation on the characteristics of near filed earthquakes and their effects on seismic demands. For this purpose 20 sets of near field ground motion and 20 sets of far filed ground motion are compared with respect to Linear Elastic Response Spectrum(LERS), Response Modification Factor(R), Inelastic Response Spectrum(IRS), and performance point of Capacity Spectum Method(CSM).

  • PDF

Development of Ground Motion Response Spectrum for Seismic Risk Assessment of Low and Intermediate Level Radioactive Waste Repositories (중·저준위 방사성 폐기물 처분장의 지진위험도 평가를 위한 지반운동스펙트럼 산정)

  • Kim, Min-Kyu;Rhee, Hyun-Me;Lee, Kyoung-Mi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.57-63
    • /
    • 2011
  • In this study, a ground motion response spectrum for the seismic risk assessment of low and intermediate level radioactive waste repositories was developed. For the development of the ground motion response spectrum, a probabilistic seismic hazard analysis (PSHA) was performed. Through the performance of a PSHA, a seismic hazard curve which was based on a seismic bed rock was developed. A uniform hazard spectrum was determined by using a developed seismic hazard curve. Artificial seismic motions were developed based on the uniform hazard spectrum. A seismic response analysis was performed on the developed artificial seismic motion. Finally, an evaluation response spectrum for the seismic risk assessment analysis of low and intermediate level radioactive waste repositories was developed.

Vertical seismic response analysis of straight girder bridges considering effects of support structures

  • Wang, Tong;Li, Hongjing;Ge, Yaojun
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1481-1497
    • /
    • 2015
  • Vertical earthquake ground motion may magnify vertical dynamic responses of structures, and thus cause serious damage to bridges. As main support structures, piers and bearings play an important role in vertical seismic response analysis of girder bridges. In this study, the pier and bearing are simplified as a vertical series spring system without mass. Then, based on the assumption of small displacement, the equation of motion governing the simply-supported straight girder bridge under vertical ground motion is established including effects of vertical deformation of support structures. Considering boundary conditions, the differential quadrature method (DQM) is applied to discretize the above equation of motion into a MDOF (multi-degree-of-freedom) system. Then seismic responses of this MDOF system are calculated by a step-by-step integration method. Effects of support structures on vertical dynamic responses of girder bridges are studied under different vertical strong earthquake motions. Results indicate that support structures may remarkably increase or decrease vertical seismic responses of girder bridges. So it is of great importance to consider effects of support structures in structural seismic design of girder bridges in near-fault region. Finally, optimization of support structures to resist vertical strong earthquake motions is discussed.

Investigation on the Generalized Hydrodynamic Force and Response of a Flexible Body at Different Reference Coordinate System (기준 좌표계에 따른 탄성체의 일반화 파랑 하중 및 응답에 대한 연구)

  • Heo, Kyeonguk;Choi, Yoon-Rak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.348-357
    • /
    • 2021
  • In this paper, the generalized hydrodynamic force and response of a flexible body are calculated at different reference coordinate systems. We generalize the equation of motion for a flexible body by using the conservation of momentum (Mei et al., 2005). To obtain the equations in the generalized mode, two different reference coordinates are adopted. The first is the body-fixed coordinate system by a rigid body motion. The other is the inertial coordinate system which has been adopted for the analysis. Using the perturbation scheme in the weakly-nonlinear assumption, the equations of motion are expanded up to second-order quantities and several second-order forces are obtained. Numerical tests are conducted for the flexible barge model in head waves and the vertical bending is only considered in the hydroelastic responses. The results show that the linear response does not have the difference between the two formulations. On the other hand, second-order quantities have different values for which the rigid body motion is relatively large. However, the total summation of second-order quantities has not shown a large difference at each reference coordinate system.

Earthquake response of isolated cable-stayed bridges under spatially varying ground motions

  • Ates, Sevket;Soyluk, Kurtulus;Dumanoglu, A. Aydin;Bayraktar, Alemdar
    • Structural Engineering and Mechanics
    • /
    • v.31 no.6
    • /
    • pp.639-662
    • /
    • 2009
  • A comprehensive investigation of the stochastic response of an isolated cable-stayed bridge subjected to spatially varying earthquake ground motion is performed. In this study, the Jindo Bridge built in South Korea is chosen as a numerical example. The bridge deck is assumed to be continuous from one end to the other end. The vertical movement of the stiffening girder is restrained and freedom of rotational movement on the transverse axis is provided for all piers and abutments. The longitudinal restraint is provided at the mainland pier. The A-frame towers are fixed at the base. To implement the base isolation procedure, the double concave friction pendulum bearings are placed at each of the four support points of the deck. Thus, the deck of the cable-stayed bridge is isolated from the towers using the double concave friction pendulum bearings which are sliding devices that utilize two spherical concave surfaces. The spatially varying earthquake ground motion is characterized by the incoherence and wave-passage effects. Mean of maximum response values obtained from the spatially varying earthquake ground motion case are compared for the isolated and non-isolated bridge models. It is pointed out that the base isolation of the considered cable-stayed bridge model subjected to the spatially varying earthquake ground motion significantly underestimates the deck and the tower responses.

On the Study of the Motion Response of a Vessel Moored in the Region Sheltered by Inclined Breakwaters (경사진 방파제에 계류된 선체 운동응답에 관한 연구)

  • Cho, I.H.;Hong, S.Y.;Hong, S.W.
    • Journal of Korean Port Research
    • /
    • v.6 no.2
    • /
    • pp.33-42
    • /
    • 1992
  • In this paper we investigate the motion response of a moored ship in the fluid region sheltered by inclined breakwaters. The matched asymptotic expansion technique is employed to analyze the wave fields scattered by the inclined breakwaters. Fluid domain is subdivided into the ocean, entrance and sheltered regions. Unknown coefficients contained in each region can be determined by matching at the intermediate zone between two neighboring regions. The wave field generated by the ship motion can be analyzed in terms of Green's function method. To obtain the velocity jump across the ship associated with the symmetric motion modes, the sheltered region is further divided into near field of the ship and the rest field. The image method is introduced to consider the effect of the pier near the ship. The integral equation for the velocity jump is derived by the flux matching between the inner region and the outer region of a moored ship. Throughout the numerical calculation it is found that the inclined angle width of entrance of breakwaters as well as the location of moored vessel play an important role in the motion response of a moored ship.

  • PDF

Response Characteristics of a Lumped Parameter Impact System under Random Excitation (집중질량 충격시스템의 불규칙가진에 대한 응답특성)

  • 이창희
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.778-784
    • /
    • 1999
  • A method for obtaining the motion of an impact system whose primary and secondary system are composed of lumped masses, springs and dampers, and all the contacts are made through spring and damping elements is presented. The frequency response functions derived from the equations of motion and the impulse response functions obtained from the inverse Fourier transform of the derived frequency response functions are used for the calculation of the system responses. The procedure developed for the calculation of displacements and force time-histories was based on the convolution integrals of impulse response functions and forces applied to the systems. Time histories of displacements and contact forces are obtained for the case where a random excitation is applied to a point in the system. Impact statistics such as contact forces and the time between impacts calculated from those time histories is presented.

  • PDF

Development of a Weight in Motion sensor using Piezo Film (피에조 필름을 이용한 축중감지기 개발)

  • Yang, Hui-Sun;Park, Yon-Kyu;Kang, Dae-Im;Kim, Am-Kee
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.262-267
    • /
    • 2000
  • This paper describes a weight in motion(WIM) sensor to measure the weight of a vehicle in motion. The main sensing element of the WIM sensor is the PVDF(Polyvinylidene fluoride) film that shows rapid response to an external excitation. Due to the property of rapid response, it is possible to measure the weight of a vehicle in motion with high speed. In the development of the WIM sensor, the dominant target value was the uniformity of the sensor. To increase the uniformity, We employed shrinkable tube made of rubber to enhance the uniformity, and performed the rolling of the brass tube repeatedly. The uniformity of the sensor was examined experimentally. It was comparable to that of a WIM sensor of the MSI which was the benchmark of this development. This paper also describes the mechanical modeling of the sensor and the suitable charge amplifier for the sensor.

  • PDF

A Study on Nonlinear Rocking Vibration Characteristics of Rigid Block (In the Case of Sliding Occurrence) (강체 블록의 비선형 로킹진동특성에 관한 연구 (미끄럼이 있는 경우))

  • 정만용;김정호;김선규;나기대;양인영
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • This paper deals with rocking response behavior of rigid block structure subjected to horizontal excitation. A strict consideration of impact and sliding between the block and base is essential to investigate the rocking vibration characteristics because the rocking behavior were greatly influenced by the impact and sliding motion. Therefore, not only restitution coefficient between the block and base but also the energy dissipation rate which is associated with sliding motion, and the static and kinetic friction coefficient between those should be included in the modeling of rocking system. The analytic program was developed to be able to simulate the experimental responses of the block subjected to horizontal sinusoidal excitations. By using this program, rocking responses were numerically calculated by the nonlinear equations for rocking system. From the response simulation and rocking vibration experiment, the following results were obtained. The rocking responses are affected by the impact motion due to energy dissipation and friction and provide very complex behavior. The toppling condition of the block is also influenced by the impact motion and sliding motion.

  • PDF

Generation of Synthetic Ground Motion in Time Domain (시간영역 인공지진파 생성)

  • Kim, Hyun-Kwan;Park, Du-Hee;Jeong, Chang-Gyun
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.51-57
    • /
    • 2010
  • The importance of seismic design is greatly emphasized recently in Korea, resulting in an increase in the number of dynamic analysis being performed. One of the most important input parameters for the dynamic seismic analysis is input ground motion. However, it is common practice to use recorded motions from U.S. or Japan without considering the seismic environment of Korea or synthetic motions generated in the frequency domain. The recorded motions are not suitable for the seismic environment of Korea since the variation in the duration and energy with the earthquake magnitude cannot be considered. The artificial motions generated in frequency domain used to generated design response spectrum compatible ground motion has the problem of generating motions that have different frequency characteristics compared to real recordings. In this study, an algorithm that generates target response spectrum compatible ground motions in time domain is used to generate a suite of input ground motions. The generated motions are shown to preserve the non-stationary characteristics of the real ground motion and at the same, almost perfectly match the design response spectrum.