• Title/Summary/Keyword: Motion kinematics

Search Result 544, Processing Time 0.026 seconds

Effect of Estrogenic Xonibiotics on Boar Sperm Motility and Motion Kinematics (Estrogenic Xenobiotics가 돼지 정자의 운동성 및 운동역학에 미치는 영향)

  • Oh, Shin-Ae;Park, Yoo-Jin;Song, Won-Hee;Mohamed, El-Sayed A.;Pang, Myung-Geol
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.47-54
    • /
    • 2011
  • Endocrine disruptors bind to hormone receptors on sperm membrane, therefore spermatozoa are potentially a useful model for examining estrogenic activities of endocrine disruptors. The objective of this study was to compare the effects of two xenoestrogenic compounds [genistein (Gen) and 4-tert-octylphenol (OP)] to those of two steroids [estrogen ($E_2$) and progesterone ($P_4$)] on boar sperm % motility and motion kinematics of in vitro. Porcine spermatozoa were incubated with various concentrations ($0.001{\sim}100\;{\mu}M$) of each chemical for 15 or 30 min, and then assessed % motility and sperm motion kinematics using computer assisted sperm analyzer (CASA). Each chemical decreased sperm % motility, and OP decreased VSL and VAP compared with untreated control(p<0.05). $E_2$ stimulated the motion kinematic changes except VCL. Moreover, Gen had effects on VCL and VAP alterations after 30 min incubation. In summary, since all chemicals studied effectively altered sperm % motility and motion kinematics, it was concluded that porcine spermatozoa could be a useful model for in vitro screening of potential endocrine disruptors.

Overview of Various Measurement Tools for Shoulder Kinematics

  • Kim, Doo Sup;On, Myoung Gi;Yeom, Jun Seop
    • Clinics in Shoulder and Elbow
    • /
    • v.20 no.4
    • /
    • pp.244-249
    • /
    • 2017
  • Shoulder kinematics is important, as it is associated with shoulder arthropathy and pain mechanisms. Various static and dynamic analysis methods are prevalent for shoulder kinematics. These include 2-dimensional plane x-ray, computed tomography, and magnetic resonance imaging, cadaver study, electromagnetic motion analysis, transcortical bone pins technique, and in vivo 3-dimensional motion analysis. Although these methods provide the value of the shoulder kinematics angle, they are unable to explain why such changes occur. Since each method has its pros and cons, it is important to understand all factors accurately, and to choose a method that best meets the purpose of the researcher.

The Effect of Force and Motion Conceptions into the Kinematics Graph Construction (대학생의 운동학 그래프 작성에 대한 역학 개념의 효과)

  • Kwon, Sung-Gi
    • Journal of The Korean Association For Science Education
    • /
    • v.17 no.4
    • /
    • pp.383-393
    • /
    • 1997
  • In order to study the effect of student's conceptions about force and motion into the graph construction in kinematics in college physics course, the tasks of constructing the qualitative graph in the similar problem context used in force conception was asked to the first 74 and third 97 student teacher in teachers' university. The frequencies analysis showed that student teachers had the naive conceptions that the throwing force was still acted to a upwarding ball. They also had the popular Aristotelian views about motion. These naive conceptions coexisted with the scientific conception about gravitational force. In a simple pendulum problem no one had the correct acceleration concepts which varies the direction in swing. This result suggest that student teacher had more difficulties in a acceleration problem than in a velocity problem In v-t and a-t graph construction tasks, the number of categories of a-t graphs were more than that of v-t graphs. There were many graph errors in a sign of velocity and acceleration. The acceleration conceptions without the relations of changes in velocity made the kinematics graphs more various shapes. The force and motion conceptions influenced the ability to construct the kinematics graphs.

  • PDF

Position-Attitude Coupling Motion Using Dual Quaternion in Spacecraft Proximity Operation (듀얼 쿼터니언을 이용한 인공위성 근접운용에서의 위치-자세 결합운동 연구)

  • Na, Yunju;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.795-802
    • /
    • 2019
  • This paper deals with position-attitude coupling motion during spacecraft relative operation, and suggests dual quaternion-based kinematics for the problem. The position-attitude coupling motion can occur when the target point is located at an arbitrary point on the satellite body, not the center of mass. This is especially apparent in close proximity operation case. The dual quaternion-based kinematics directly reflects the angular velocity state, so that the coupling motion in which the change of attitude affects the position can be concisely defined. In this study, a new dual quaternion-based kinematics is presented along with a conventional approach to solve the coupling problem. Numerical simulations show that the position error for the target point is generated by the coupling motion, and verify that the dual quaternion-based kinematics can solve this problem.

A Study on Inverse Kinematics Based Posture and Motion Generation System for Sports Climbing (역운동학 기반 스포츠클라이밍 자세 및 동작 생성 시스템에 관한 연구)

  • Shin, Kyucheol;Son, JongHee;Kim, Dongho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.5
    • /
    • pp.243-250
    • /
    • 2016
  • Recently, public interest in virtual reality (VR) and augmented reality (AR) has increased. Therefore, computer graphics-related research has been actively conducted. This has included research on virtual space related to human posture implementation. However, such research has focused on general posture in humans. This paper presents a system with reference to the basic posture in sports climbing and the inverse kinematics method for generating the positions and behavior of virtual characteristics in a three-dimensional virtual space. The simulation based on the inverse kinematics method, produced with an inverse kinematics solver and initial pose animation from motion capture, provides realistic and natural movement. We designed a simulation system to generate correct posture and motions similar to those in sports climbing by applying the basic procedure of sports climbing. The simulation system provides help for producing content about sports climbing, such as learning programs for novice climbers and sports climbing games.

Extended Operational Space Formulation for the Kinematics, Dynamics, and Control of the Robot Manipulators with Redundancy (여유자유도 로봇의 기구학, 동역학 및 제어를 위한 확장실공간 해석)

  • 장평훈;박기철;김승호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3253-3269
    • /
    • 1994
  • In this paper a new concept, named the Extended Operational Space Formulation, has been proposed for the effective analysis and real-time control of the robot manipulators with kinematic redundancy. The extended operational space consists of operational space and optimal null space. The operational space is used to describe robot end-effector motion; whereas the optimal null space, defined as the target space of the self motion manifold, is used to express the self motion for the secondary tasks. Based upon the proposed formulation, the kinematics, statics, and dynamics of redundant robots have been analyzed, and an efficient control algorithm has been proposed. Using this algorithm, one can optimize a performance measure while tracking a desired end-effector trajectory with a better computational efficiency than the conventional methods. The effective ness of the proposed method has been demonstrated with simulations.

Kinematic Analysis and Motion Implementation of a Humanoid Robot with a Serial and Parallel Structure (직렬.병렬 혼합구조의 휴머노이드 상체로봇의 기구학 해석 및 움직임 구현)

  • Bae, Yeong-Geol;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.952-958
    • /
    • 2009
  • This article presents a combined structure of serial and parallel mechanisms for a humanoid robot. The 3 DOF parallel structure is designed and added to the waist of the humanoid robot arm to give flexible bending and rotating motions. Forward and inverse kinematics of a serial and parallel robot have been analyzed to generate motions. Simulation studies of verifying kinematics solutions of the parallel robot have been done. Experimental studies of mimicking shake-hands motion have been conducted to show the feasibility and usability of the combined structure.

A Study on Motion Control and Kinematics Analysis of Articulated Manipulator Attachment for Excavator (포크레인용 다관절 매니퓰레이터 어태치먼트 운동학 해석 및 모션제어)

  • Kim, Hee-Jin;Kim, Sang-Hyun;Jang, Ki-Won;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.807-819
    • /
    • 2019
  • In this paper, it is proposed a new approach to motion control and kinematics analysis of articulated manipulator attachment with five degree of freedom for excavator. Unlike the well-established theory for the control of linear systems, there is little general control theory relatively for a robust control of nonlinear systems. The control technique is essential for providing a stable and robust performance for application of articulated manipulator control. The proposed control algorithm is one of robust control methods based on error informations of the position and velocity error informations using stability analysis of dynamic model. Through simulation test, the proposed control scheme is illustrated to be a efficient control technique for real-time control.

Work chain-based inverse kinematics of robot to imitate human motion with Kinect

  • Zhang, Ming;Chen, Jianxin;Wei, Xin;Zhang, Dezhou
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.511-521
    • /
    • 2018
  • The ability to realize human-motion imitation using robots is closely related to developments in the field of artificial intelligence. However, it is not easy to imitate human motions entirely owing to the physical differences between the human body and robots. In this paper, we propose a work chain-based inverse kinematics to enable a robot to imitate the human motion of upper limbs in real time. Two work chains are built on each arm to ensure that there is motion similarity, such as the end effector trajectory and the joint-angle configuration. In addition, a two-phase filter is used to remove the interference and noise, together with a self-collision avoidance scheme to maintain the stability of the robot during the imitation. Experimental results verify the effectiveness of our solution on the humanoid robot Nao-H25 in terms of accuracy and real-time performance.