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The ability to realize human‐motion imitation using robots is closely related to

developments in the field of artificial intelligence. However, it is not easy to imi-

tate human motions entirely owing to the physical differences between the human

body and robots. In this paper, we propose a work chain‐based inverse kinematics

to enable a robot to imitate the human motion of upper limbs in real time. Two

work chains are built on each arm to ensure that there is motion similarity, such

as the end effector trajectory and the joint‐angle configuration. In addition, a two‐
phase filter is used to remove the interference and noise, together with a self‐colli-
sion avoidance scheme to maintain the stability of the robot during the imita-

tion. Experimental results verify the effectiveness of our solution on the humanoid

robot Nao‐H25 in terms of accuracy and real‐time performance.

KEYWORD S

humanoid robot, imitation, inverse kinematics, motion tracking, work-chains

1 | INTRODUCTION

In recent times, humanoid robots have attracted much
attention owing to the wide application of the robot com-
munity on applications such as telemedicine, home service,
and distance education. Among them, human‐motion imita-
tion is currently a popular topic, and is considered a good
candidate for studying the principle of mechanical control.

There have been several studies on the imitation of
robot motion imitation. Originally, human motion was cap-
tured and optimized off‐line to adapt to the robot structure
and constraints [1–3]. Recently, real‐time imitation systems

[4–13] have been developed owing to the development of
three‐dimensional (3D) motion‐tracking equipment such as
Kinect [14] and Xsens MVN [15]. However, owing to the
differences in the joints of the human body and robot, there
is a discussion about the motion similarity during mapping
motions from humans to robots [16,17]. Generally, there
are two definitions for motion similarity: one is the similar-
ity between end‐effector trajectories [8–13], and the other
is the similarity between angular configurations [4–7]. Both
definitions have been used for robot control.

Although these studies have solved some problems
related to humanoid robot imitation, there remain several
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challenges. For example, the imitation should be imple-
mented in real time. Generally, the human skeletal data
obtained from a Kinect sensor should be smoothed to mini-
mize jitter due to the noise and interference. This processing
should be completed within a short period. After that, the
processed motion data can be sent to the robot. Meanwhile,
owing to the differences in the joints of the human body and
robot, it is not easy for robots to imitate humans with high
accuracy. Moreover, during the imitation procedure, it is
very important to maintain the stability of the robot. To
address this issue, in this paper, we propose a system that
enables a robot to imitate upper‐body motions in real time.
The main contributions of this paper are as follows:

1) To simplify the inverse kinematics process, we built
two work chains on each arm. This method not only
guarantees the similarity of the end-effector trajecto-
ries, but also increases the similarity of angle configu-
rations.

2) We used a two-phase filter to remove the interference
and noise contained in the joint angles to make the imi-
tation more stable.

3) Many experiments have been performed to verify the
effectiveness of our solution in terms of motion similar-
ity and imitation delay.

The rest of this paper is organized as follows. Section 2
introduces the related work on the robot motion imitation,
and Section 3 describes the framework of our imitation
system. Section 4 introduces the implementation of the
system in detail. Section 5 analyzes the performance and
Section 6 concludes the paper.

2 | RELATED WORK

To map motions from a human to robot, there are two
types of motion similarity: the similarity between the end‐
effector trajectories, and the similarity between the angular
configurations. For the latter, Ningjia and others [4] pro-
posed a geometric method to calculate the upper body joint
angles of robots using human skeleton data captured with a
Kinect sensor [18]. Lemtwally and others [5] used the spa-
tial vector method to obtain all joint angles of robot. Zuher
and others [6] proposed three mathematical methods for the
joint‐angle calculation. Chen and others [7] proposed a
lower‐body imitation strategy that is based on the geometry
to guarantee the stability of the robot. All of them used the
Kinect sensor [14] to capture human motion.

However, Kruger and others [16] and Tang and others [17]
claimed that the similarity between the end‐effector trajectories
is more effective than that between the angular configurations.
Since then, there have been some studies on the end‐effector

similarity. Among them, the inverse kinematic (IK) algorithm
is an important algorithm to achieve the similarity between the
end‐effector trajectories. A classic IK algorithm is the weighted
least‐norm (WLN) algorithm [19], which uses a weight matrix
to avoid joint‐angle limitations. The other one is the damped
least‐squares (DLS) algorithm [18], which is similar to the
Levenberg‐Marquardt (LM) algorithm [20]. Besides that,
Nikos and others [21] presented a forward‐kinematics equa-
tion and an IK analytical solution for the Nao robot.

In addition, there have been some IK‐based algorithms
for the robot imitation. Koenemann and others [8,9] used a
DLS‐based IK solver to solve the IK problem for the real‐
time whole‐body motion imitation by the Nao robot. They
used the special equipment‐MVN suit [15] to track human
motion because it provides more accurate motion informa-
tion than Kinect. Fan Wang and others [10] proposed a new
IK algorithm to achieve imitation. They transformed the IK
solution into an optimization problem that was solved using
the LM algorithm. Liang Zhang and others [11] proposed a
real‐time whole‐body imitation with the Nao robot. They
combined the DLS algorithm and WLN algorithm to solve
the IK problem. Shohin Mukherjee and others [12] used the
iteration method and adaptive neuro‐fuzzy inference systems
to solve the IK. Alibiing and others [13] combined the angle‐
configuration similarity and the end‐trajectory similarity.
They calculated the joint angles using geometry before solv-
ing the IK problem.

Although there are several studies that focus on developing
robots that imitate human motion, there remain some chal-
lenges, such as the ability to achieve real‐time performance,
imitation accuracy, and imitation stability. In the next section,
we will present a new solution to address these issues.

3 | SYSTEM OVERVIEW

Figure 1 depicts the system model of a humanoid robot
mimicking human motion in real time. Our implementation
consists of six parts. First, the human skeleton data are cap-
tured by a Kinect sensor. The Kinect sensor provides 3D
skeletal tracking information at 30 fps, and the frame data
contains position information about 20 joints of the human
body. However, owing to the occlusion, environmental
noise, and interference, the human skeletal data should be
smoothed to minimize jitter. Here, we used a smoothing
filter in the Holt double exponential smoothing method to
filter the skeletal data. Then, we used the vector informa-
tion to describe the relative relationship between each joint
instead of the location information. Meanwhile, the vectors
will be mapped from the human space to the robot space
owing to the joint difference.

After that, we set up two work chains on each hand,
and the forward kinematics equation is built based on the
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distal DH convention. These work chains not only simplify
the IK solution process, but also ensure the similarity of
end trajectories. Then, the robot joint angles are obtained
by solving the IK of the work chains. To make the imita-
tion more stable, we used a two‐step filter to control the
joint angles. Finally, we constrained the angle to prevent
self‐collisions of the humanoid robot. In Table 1, we list
the notations that are used in this paper.

4 | WORK‐CHAIN‐BASED REVERSE
KINEMATICS

In our implementation, we ensure real‐time performance by
simplifying the inverse kinematics solution to reduce the
time complexity of the algorithm. Then, by building two
work chains on each arm, we conquer the problem of joint
difference to ensure the similarity of the joint trajectories.
In addition, we used a two‐step filter to realize control of
the joint angles to maintain the stability of the robot during
the imitation.

Figure 2 depicts four kinematic chains on the arms of
the Nao robot. For each arm, there are two chains. The first
kinematic chain extends from the shoulder to the elbow,

and the second kinematic chain extends from the shoulder
to the wrist.

4.1 | Vector mapping

To use the captured motion from the Kinect for the humanoid
robot, we need to transform it into the space of the robot as
the positions are available from the motion capture data. We
used the vector information to describe the relative relation-
ship between each joint instead of the location information.

For the left arm, let E
SVH denote the vector between the

shoulder and the elbow of the human body, and let E
SVN

denote the corresponding vector of the Nao robot. E
SVH

denotes the vector between the shoulder and the wrist of the
human body, and W

S VN represents the corresponding vector
of the Nao robot, as in Figure 3. l0, l1, and l2 represent the
offsets of each joint or the size of the connecting rod, which
were defined in the datasheet [22]. Then, we can map these
vectors on the human to the robot using (1) and (2). For the
right arm, the mapping equations are similar.

E
SVN ¼

E
SVH

kESVHk � l1 þ
0
l0
0

2
4

3
5; (1)
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FIGURE 1 Humanoid robot mimicking system
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W
S VN ¼

E
SVH

kESVHk � l1 þ
W
EVH

kWEVHk � l2 þ
0
l0
0

2
4

3
5: (2)

4.2 | Forward kinematics using distal D‐H
parameters

The Denavit Hardenberg (D‐H) parameters were used to
assign a right‐handed orthogonal coordinate system to each
link in an open kinematic chain. The transformations
between adjacent frames can be performed by a uniform
coordinate transformation matrix. There are two main types
of D‐H conventions: distal and proximal [22]. Here, we used
the distal D‐H in our work chains. As opposed to previous
studies in which one work chain is built on each arm [8]
[13], we built two work chains on each arm to ensure the
similarity of the joint trajectories. First, we established work
chains from the shoulder to the elbow on each arm of the
robot, as in Figure 4. Table 2 lists the D‐H parameters for
the first chain.
Here,

x ¼ tan�1 l0
l1
:

Then, we built other work chains from the shoulder to
the wrist on the arms of the robot, as shown in Figure 5.
Table 3 lists the DH parameters for the third chain. As the

TABLE 1 Definition of notations

S Shoulder joint

E Elbow joint

W Wrist joint

ðjSÞVH Vector between the shoulder and the joint j in the human

ðjSÞVN Mapping vector of ðjSÞVH in the robot

l0, l1, l2 Offset of each joint in the Nao robot

θ0, θ1, θ2, θ3 Joint angles of the arm defined in Nao robot, the first two relate to the joints on the shoulder, and the last two
relate to the joints of elbow

x −1 l0/l1
j
i�1T Transformation matrix from the joint j to joint j – 1

Rot(z,θi) Rotation matrix which rotates around the z axis with θi degree

Rot(x,Ai) Rotation matrix which rotates around the x axis with the degree of Ai

Trans(0,0,di) Translation matrix which translates along the z axis with di

Trans(ai,0,0) Translation matrix which translates along the x axis with ai.
K
SR Rotation matrix from the Kinect coordinate system to the shoulder coordinate system on the robot
j
SV Vector from the shoulder to the joint j in the coordinate system of Nao robot

V [0 0 0 1]T

j
SV

4 ½jSVT1�T
j

j�1Tch i Transformation matrix from joint j to joint j – 1 in the work chain i

Chain 1

Chain 3

Chain 2

Chain 4

FIGURE 2 Four positive kinematic chains on two hands
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DH parameters for the two work chains of the right hand
are similar to those of the left hand, we do not list them.

The DH transformation describes the translation and the
orientation of joint j based on the previous joint j – 1 in
the reference frame. The general DH matrix is
j
j�1T ¼ Rotðz; θiÞ�Transð0; 0; diÞ�Transðai; 0; 0Þ�Rotðx;AiÞ;

(3)

where Rot z; θið Þ is a rotation matrix that rotates around the
z axis at θi degree, and Rot x;Aið Þ is a rotation matrix that
rotates around the x axis with an angle of Ai. Trans 0; 0; dið Þ
is a translation matrix that translates along the z axis with
di, and Trans ai; 0; 0ð Þ is a translation matrix that translates
along the x axis with ai. Then, the transformation matrix
for chain i can be denoted using the DH matrix as

end
0 T ¼ 1

0T � 21T � � � end3 T: (4)

4.3 | Inverse kinematic solution

As the robot is controlled using the configurations of the
joint angles, we need to use the IK solution to compute the
angles according to the vectors (1) and the transformation
matrix (4). First, we need to map the vectors from the Kinect
coordinate to the Nao coordinate. Equations (5) and (6)
denote the rotation matrix and the position of the end effec-
tor in the base coordinate of the joint chain, respectively.
Here, ROT(90°) denotes the rotation 90∘ around the Y axis of
the Kinect coordinate. KSR is the rotation matrix of the shoul-
der from the Kinect coordinate to the robot coordinate. jSV is
the vector from the shoulder to the joint j in the shoulder
coordinate of Nao. If j is replaced with W, it denotes the
wrist joint. If j is replaced with E, it denotes the elbow joint.

K
SR ¼ RotðY ; 90�Þ; (5)

j
SV ¼ K

SR � jSVNao: (6)

For chain 1 and chain 3 on the left arm, we can obtain
the transformation matrix using Tables 2, 3, and (4). Then,
the position of the end effector in the coordinates of the
shoulder can be obtained using (6). In chain 1, the relation-
ship between the position of the end joint and the joint
angles can be represented as

E
SV

4 ¼ E
SX

E
SY

E
SZ 1

� �T
¼ 1

0Tch 1 � end1 Tch 1 �V

¼

ffiffiffiffiffiffiffiffiffiffiffiffi
l20þ l21

p
cosðθ1þ xÞ �cosθ0ð Þffiffiffiffiffiffiffiffiffiffiffiffi

l20þ l21
p

cosðθ1þ xÞ �sinθ0ð Þffiffiffiffiffiffiffiffiffiffiffiffi
l20þ l21

p
sinðθ1þ xÞ
1

2
66664

3
77775: ð7Þ

Here, j
j�1Tch 1 is the transformation matrix from joint j

to joint j − 1 in the work chain 1. V is equal to
0 0 0 1½ �T . Then, we have

sinðθ1 þ xÞ ¼
E
SZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l02 þ l12
p ; (8)

sin θ0 ¼
E
SY

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l02 þ l12

p
cosðθ1 þ xÞ

; (9)

TABLE 3 DH parameters of chain 3

Chain1 θ d a A

0–1 θ0 + π 0 0 π/2

1–end θ1 + π/2 0 l0 π/2

2–3 θ2 + π l1 0 π/2

3–end θ3 + π/2 0 l2 0
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FIGURE 4 Work chains from shoulder to elbow

TABLE 2 DH parameters for work chain 1
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cos θ0 ¼
E
SX

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l02 þ l12

p
cosðθ1 þ xÞ

: (10)

According to (9), the calculated angle lies within the
range of [−90, 90]. However, for the joints of the robot,
the angle may exceed this range. Table 4 lists the joint‐
angle ranges of the Nao robot [23]. Here, we use it
together with (10) in order to obtain an appropriate value
for the joint angle. The detailed calculated procedure is
referred to as Algorithm 1. For example, we calculate the
value of “LShoulderPitch,” that is, θ0. First, we determine
the range of “LShoulderPitch” according to Table 4. If it
lies within [0, 180], we can use (10) to obtain the final
value. If it lies within [−90, 90], we use (9) to obtain the
value. However, if the range is not within these two ranges,
for example, [−119.5, 119.5], we need to use (11) to com-
pute the value.

θ0 ¼
cos�1

E
SX

�
ffiffiffiffiffiffiffiffiffiffiffi
l02þl12

p
� cosðθ1þxÞ

� �
; sin θ0 > 0

� cos�1
E
SX

�
ffiffiffiffiffiffiffiffiffiffiffi
l02þl12

p
� cosðθ1þxÞ

� �
; sin θ0 < 0:

8>><
>>:

(11)

Algorithm 1. Joint‐angle computation

1. input: the sine and cosine values of θi

2. output: The angle should be obtained in the robot angle
configuration

3. if the range of θi ∈ [0,180] then

4. θi = cos�1θi

5. return θi

6. end if

7. if the range of θi ∈ [−90,90] then

8. θi = sin�1θi

9. return θi

10. end if

11. if sin θi > 0 then

12. θi = cos�1θi

13. else

14. θi = –cos�1θi

15. end if

16. return θi

According to θ0 (with (11)) and θi (with (8)), we have
the matrix of 1

0Tch 3 and 2
1Tch 3. For chain 3, between the

position of the end joint and the joint angles, there is

W
S V

4 ¼ 1
0Tch 3 � 2

1Tch 3 � 3
2Tch 3 � end

3 Tch 3 � V (12)

which can be written as

2
1T

�1
ch 3 � 1

0T
�1
ch 3 � W

S V4 ¼ 3
2Tch 3 � end

3 Tch 3 � V : (13)

To facilitate the calculation, the left side of (13) can be
replaced by

2
1T

�1
ch 3 � 1

0T
�1
ch 3 � W

S V4 ¼
W
S X

0
W
S Y

0
W
S Z

0

1

2
664

3
775 ¼

l2 cos θ2 sin θ3
l2 sin θ2 sin θ3
l2 cos θ3 þ l1

1

2
664

3
775: (14)

Then, we have

sin θ2 ¼
W
S Y

0

l2 � sin θ3 ; (15)

cos θ2 ¼
W
S X

0

l2 � sin θ3 ; (16)

cos θ3 ¼
W
S Z

0 � l1
l2

: (17)

Using Table 4 and Algorithm 1, θ3 and θ2 can be written
as

θ3 ¼ � cos�1
W
S Z

0 � l1
l2

; (18)

θ2 ¼
cos�1

W
S X

0

l2 � sin θ3 ; sin θ2 > 0

� cos�1
W
S X

0

l2 � sin θ3 ; sin θ2 < 0

8>><
>>:

; (19)

Using the same method, we can obtain the corresponding
joint angles for the right hand.

4.4 | Smoothing and filtering

Although we have obtained the joint angles for the robot
control, these angles suffer from the impulse interference
and noise, which may result in the jitter. Figure 6 depicts
the computed joint angle of “LEblowYaw” during the
movements in Figure 13. We note that there are many
impulse interferences. Considering the real‐time require-
ments, we chose the filter with low computational com-
plexity.

As the computed angles possess impulse interference and
noise, the use of a single filter is inadequate to remove them
completely. Here, we remove them by filtering in two
phases. During the first phase, we remove the impulse inter-
ference using a clipping filter. Figure 7 depicts the “LElbow-
Yaw” angle after the clipping filter. We note that the impulse

TABLE 4 Ranges of joint angles in hand

Joint Range (°) Joint Range (°)

LShoulderPitch [–119.5,119.5] RShoulderPitch [–119.5,119.5]

LShoulderRoll [–18,76] RShoulderRoll [–76,18]

LElbowYaw [–119.5,119.5] RElbowYaw [–119.5,119.5]

LElbowRoll [–88.5,–2] RElbowRoll [2,88.5]
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interference has been removed completely. However, after
the clipping filter, the angle does not change smoothly.
Therefore, we used the other filter to remove the noise in the
second phase. Figures 8 and 9 depict the angles after the Kal-
man filter and the five dot‐averaging filter. Note that both of
these filters can eliminate the noise effectively, but the Kal-
man filter works better than the five dot‐averaging filter. At
the same time, we need to compare the hysteresis of both fil-
ters. For clarity, Figure 10 illustrates the enlarged signal with
these two filters. Note that both of them have a lag of
10 ms–100 ms. The hysteresis is determined by the pro-
cessed samples and the algorithm itself. Considering that the
hysteresis is similar, we chose the Kalman filter as the sec-
ond phase filter to remove the noise.

4.5 | Self‐collision avoidance

In order to prevent damage to the robot, self‐collision avoid-
ance is necessary. For the Nao robot, the self‐collision
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avoidance scheme has been provided by the development plat-
form [24], which uses a 3D shape to simplify the robot struc-
ture. By determining whether there is a collision between the
3D shapes, it is possible to know whether the collision will
appear.

5 | EXPERIMENTAL RESULTS

In our experiment, we used the NAO‐H25 robot and Kinect
1.0 to capture human motion. A laptop with an Intel(R)
core i5‐4460M, 2.5‐GHz processor was used to compute
the joint angles and control the robot. We compared the
motion similarity and delay using the geometric method [5]
and the IK method (IKbasic) [12].

5.1 | Similarity of end‐effector trajectory

For the similarity analysis of the end‐effector trajectory, we
performed five motions using the right arm (1–5 in Fig-
ure 11) and seven motions with both hands (6–12 in Fig-
ure 11). For each motion, we perform 10 iterations to find
the average. Table 5 lists the mean‐squared error (MSE) in
units of centimeters (cm) between the target and the actual
end‐effector trajectories under different conditions. From the
results, we note that the MSE of our solution is on average
much smaller than those of other methods. The geometric
method performs worst as it configures the robot based on
the angle similarity. The IKbasic method cannot converge at
some points, for example, the singular points and those
points beyond the joint angle range of the robot. Besides that,
the convergence speed is related to the reference angle com-
puted in the previous frame. Therefore, errors may occur if
the movement speed is too fast during the motion imitation.

5.2 | Angular similarity

We used the mean cosine similarity between the robot
and human upper arm to quantitatively analyze the angu-
lar similarity. The calculation vectors consist of four

degrees‐of‐freedom (DoFs) on the robot arm and a corre-
sponding DoF on the human arm. Table 6 lists the aver-
age value of the angular similarity. As the geometric
method controls the robot with the joint angle, the angu-
lar similarity is 100%. In comparison, our IKproposed

could achieve a 97.02% angular similarity, which is
much better than that of IKbasic. For clarity, Figure 12
illustrates the imitation results obtained with our solution
and the geometric method for different movements. From
the results, we find that our solution works well, and is
close to those of the geometric method.

5.3 | Mimicking delay

To show the effectiveness of the real‐time performance,
Table 7 lists the mimicking delay of our system during the

(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11) (12)

FIGURE 11 Motions performed with one or two hands

TABLE 5 Mean squared error (unit: cm)

Motion no. IKproposed IKbasic Geometric

1 0.273 2.71E‐05 13.605

2 0.409 9.22E‐05 5.920

3 0.181 9.14E‐05 10.142

4 1.281 19.63 8.166

5 0.422 10.77 13.018

6 0.101 2.36E‐05 9.134

7 1.650 4.01E‐05 14.588

8 1.448 15.273 13.087

9 1.833 12.06 14.097

10 1.177 6.29E‐05 13.393

11 1.682 1.3E‐05 12.620

12 1.280 13.754 13.550

Avg. 0.978 5.957 11.777

TABLE 6 Angular similarity between human and robot (%)

Motion IKproposed IKbasic Geometric

1 99.20 97.56 100.00

2 96.92 91.65 100.00

3 97.90 86.74 100.00

4 98.51 85.36 100.00

5 97.55 90.33 100.00

6 98.98 96.50 100.00

7 98.18 91.75 100.00

8 95.64 87.82 100.00

9 97.29 96.42 100.00

10 91.06 87.25 100.00

11 94.92 93.67 100.00

12 95.12 75.01 100.00

Avg. 97.02 90.00 100.00
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motions, as shown in Figure 13. However, the delay in
Table 7 does not include the response time of the Nao
robot. From the results, we note that our proposed system
can achieve high real‐time performance. The duration of
the kinematics solution includes finding the target positions
for all end effectors and determining the IK solution to
achieve all angles for the robot configuration. The duration
of the filtering includes smoothing and filtering. Besides
that, the constraint of angles and self‐collision avoidance
also introduces an extra delay. In our proposed system, the
average mimicking delay is about 1.158 ms, and the maxi-
mum delay is about 2.357 ms, which is suitable.

6 | CONCLUSIONS

In this paper, we proposed a solution to enable the upper‐
body of a humanoid robot to imitate human motion in
real‐time. In this solution, we built four work chains on
the humanoid robot arms. Then, the IK solution process is
simplified by separately solving the IK problem of two
work chains on each arm. After that, smoothing and filter-
ing were employed to achieve a safe and reliable imita-
tion. Experimental results verify the effectiveness of our

proposed solution in terms of motion similarity and imita-
tion delay. In the future, we intend to extend our solution
to the whole body by incorporating balance control for
the lower‐body of the robot.
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