• Title/Summary/Keyword: Motion Mechanism

Search Result 1,151, Processing Time 0.032 seconds

Design of C-shape Sharp Turn Trajectory using Neural Networks for Fish Robot (신경회로망을 사용한 물고기 로봇의 빠른 방향 전환 궤적 설계)

  • Park, Hee-Moon;Park, Jin-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.510-518
    • /
    • 2014
  • In this study, in order to improve and optimize the performance of the turning mechanism for a fish robot in the fluid, we propose the tail joint trajectories using neural networks to mimic the CST(C-shape Sharp Turn) patterns of a real fish which is optimized in the natural environment. In order to mimic the CST patterns of a fish, we convert the sequential recording CST patterns into the coordinate data, and change the numerical coordinate data into a functions. We change the motion functions to the relative joint angles which is adapted to suit robot's shape and data. However, these relative joint trajectories obtained by the sequential recording of the carp have low-precision. It is difficult to apply to the control of a fish robot. Therefore, the relative joint trajectories are interpolated using neural networks with superior generalization ability and applied to the fish robot. we have found that the proposed method using neural networks is superior to ones using high-order polynomial equation through the computer simulations.

Vibration Reduction of Composite Helicopter Blades using Active Twist Control Concept (능동 비틀림 제어기법을 이용한 복합재료 로터 블레이드의 진동 억제)

  • Pawar, Prashant M.;You, Young-Hyun;Jung, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.139-146
    • /
    • 2009
  • In this study, an assessment is made for the helicopter vibration reduction of composite rotor blades using an active twist control concept. The piezoceramic shear actuation mechanism along with elastic couplings of composite blades is used for vibration reduction. The rotor blades are modeled as composite box-beams with actuator layers bonded on the outer surfaces of the thin-walled section. The governing equations of motion for helicopter blades are obtained using Hamilton's principle. A time domain unsteady aerodynamic theory with free wake model is used to obtain the airloads. Various rotor configurations with different elastic couplings with appropriate actuator placement are used to investigate the hub vibration characteristics. Numerical results show that a substantial reduction of $N_b$/rev hub vibration can be achieved using the optimal control algorithm.

Multiphase Modeling on the Convective Transport of an Organic Solvent through Unsaturated Soils (비포화 토양층 내 유기 용매의 이류 이동에 대한 다상 모델링)

  • Lee Kun Sang
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.3
    • /
    • pp.20-26
    • /
    • 2004
  • In-situ photolysis is one of the most promising ways to clean up a soil contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). This study focuses on the mathematical description and model development of the convective upward transport of an organic solvent driven by evaporation and photodecomposition at the surface as the major transport mechanism in the clean up process. A finite-element-based numerical model was proposed to incorporate effects of multiphase flow on the distribution of each fluid, gravity as a driving force, and the use of van Genutchen equation for more accurate description of k-S-p relations. This paper presents results of extensive numerical calculations conducted to investigate the various parameters that play a role in the solvent migration through a laboratory-scale unsaturated soil column. The numerical results indicate that gravity affects significantly on the fluids distribution and evaporation for highly permeable soils. The soil texture has a profound influence on the fluid saturation profile during evaporation process. The amount of solvent convective motion increases with increasing evaporation rates and decreasing initial water saturation. Simulations conducted in this study have shown that the developed model is very useful in analyzing the effects of various parameters on the convective migration of an organic solvent in the soil environments.

Effects of Different Chair Heights on Ground Reaction Force and Trunk Flexion during Sit-to-Stand in the Elderly

  • Lee, Na-Kyung;Lee, Myoung-Hee
    • The Journal of Korean Physical Therapy
    • /
    • v.26 no.6
    • /
    • pp.449-452
    • /
    • 2014
  • Purpose: The purpose of this study was to analyze the coordination between trunk flexion and lower limb extension contributing to vertical propulsion during sit-to-stand (STS) at different chair heights in the elderly. Methods: Ten elderly subjects were asked to stand up at their natural speed from different chair heights : (1) $90^{\circ}$ knee flexion; (2) $100^{\circ}$ knee flexion; (3) $110^{\circ}$ knee flexion; and (4) $120^{\circ}$ knee flexion. A standard chair without a backrest or armrests was used in this study. To remove inertial effects of upper limb movements, subjects were asked to stand up from a chair with their arms crossed at the chest. Mean of results of three trials were used in the analysis at different knee flexion angles. Distances moved by the shoulder for compensatory trunk movement was recorded by motion analysis and vertical force was recorded under foot using force plates. Distances moved by the shoulder and vertical ground reaction force measurements were analyzed using repeated ANOVA. Results: Distances moved by the shoulder significantly decreased with higher chair (p<0.05). Vertical forces were not significant difference on chair heights (p>0.05), but results of pairwise comparisons for vertical force revealed significant difference between $90^{\circ}$ knee flexion and $120^{\circ}$ knee flexion (p<0.05). Conclusion: Trunk movement is probably used as a compensatory mechanism at low chair heights to increase lift-off from sitting by the elderly.

Dynamic Modeling and Design of Finger Exoskeleton Using Polymer Actuator (고분자 구동체를 이용한 손가락 외골격기구의 설계 및 동력학적 모델 개발)

  • Jeong, Gwang-Hun;Kim, Yoon-Jeong;Yoon, Bye-Ri;Wang, Hyuck-Sik;Song, Dae-Seok;Kim, Sul-Ki;Rhee, Kye-Han;Jho, Jae-Young;Kim, Dong-Min;Lee, Soo-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.717-722
    • /
    • 2012
  • This paper presents the design and dynamic model of the finger exoskeleton actuated by Ionic Polymer Metal Composites (IPMC) to assist a tip pinch task. Although this exoskeleton will be developed to assist 3 degree-of-freedom motion of each finger, it has been currently made to perform the tip pinch task using 1 degree-of-freedom mechanism as the first step. The six layers of IPMC were stacked in parallel to increase the low actuation force of IPMC. In addition, the finger dummy was manufactured to evaluate the performance of the finger exoskeleton. The pinch task experiments, which were performed on the finger dummy with the developed exoskeleton, showed that the pinch force close to the desired level was obtained. Moreover, the dynamic model of the exoskeleton and finger dummy was developed in order to perform the various analyses for the improvement of the exoskeleton.

Investigation of Sensor Models for Precise Geolocation of GOES-9 Images (GOES-9 영상의 정밀기하보정을 위한 여러 센서모델 분석)

  • Hur, Dong-Seok;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.4
    • /
    • pp.285-294
    • /
    • 2006
  • A numerical formula that presents relationship between a point of a satellite image and its ground position is called a sensor model. For precise geolocation of satellite images, we need an error-free sensor model. However, the sensor model based on GOES ephemeris data has some error, in particular after Image Motion Compensation (IMC) mechanism has been turned off. To solve this problem, we investigated three sensor models: collinearity model, direct linear transform (DLT) model and orbit-based model. We applied matching between GOES images and global coastline database and used successful results as control points. With control points we improved the initial image geolocation accuracy using the three models. We compared results from three sensor models. As a result, we showed that the orbit-based model is a suitable sensor model for precise geolocation of GOES-9 Images.

Wake-induced vibration of the hanger of a suspension bridge: Field measurements and theoretical modeling

  • Li, Shouying;Deng, Yangchen;Lei, Xu;Wu, Teng;Chen, Zhengqing
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.169-180
    • /
    • 2019
  • The underlying mechanism of the wind-induced vibration of the hangers of the suspension bridges is still not fully understood at present and hence is comprehensively examined in this study. More specifically, a series of field measurements on the No. 2 hanger of the Xihoumen Bridge was first carefully conducted. Large amplitude vibrations of the hanger were found and the oscillation amplitude of the leeward cable was obviously larger than that of the windward cables. Furthermore, the trajectory of the leeward cable was close to an ellipse, which agreed well with the major characteristics of wake-induced vibration. Then, a theoretical model for the wake-induced vibration based on a 3-D continuous cable was established. To obtain the responses of the leeward cable, the finite difference method (FDM) was adopted to numerically solve the established motion equation. Finally, numerical simulations by using the structural parameters of the No. 2 hanger of the Xihoumen Bridge were carried out within the spatial range of $4{\leq}X{\leq}10$ and $0{\leq}Y{\leq}4$ with a uniform interval of ${\Delta}X={\Delta}Y=0.25$. The results obtained from numerical simulations agreed well with the main features obtained from the field observations on the Xihoumen Bridge. This observation indicates that the wake-induced vibration might be one of the reasons for the hanger oscillation of the suspension bridge. In addition, the effects of damping ratio and windward cable movement on the wake-induced vibration of the leeward cable were numerically investigated.

Wear evaluation of CAD-CAM dental ceramic materials by chewing simulation

  • Turker, Izim;Kursoglu, Pinar
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.5
    • /
    • pp.281-291
    • /
    • 2021
  • PURPOSE. To evaluate the wear of computer-aided design/computer-aided manufacturing (CAD-CAM) dental ceramic materials opposed by enamel as a function of increased chewing forces. MATERIALS AND METHODS. The enamel cusps of healthy human third molar teeth (n = 40) opposed by materials from CAD-CAM dental ceramic groups (n = 10), including Vita Enamic® (ENA), a polymer-infiltrated ceramic network (PICN); GC Cerasmart® (CERA), a resin nanoceramic; Celtra® Duo (DUO), a zirconia-reinforced lithium silicate (ZLS) ceramic; and IPS e.max ZirCAD (ZIR), a polycrystalline zirconia, were exposed to chewing simulation (1,200,000 cycles; 120 N load; 1 Hz frequency; 0.7 mm lateral and 2 mm vertical motion). The wear of both enamel cusps and materials was quantified using a 3D laser scanner, and the wear mechanisms were evaluated by scanning electron microscopy (SEM). The results were analysed using Welch ANOVA and Kruskal Wallis test (α = .05). RESULTS. ZIR showed lower volume loss (0.02 ± 0.01 mm3) than ENA, CERA and DUO (P = .001, P = .018 and P = .005, respectively). The wear of cusp/DUO [0.59 mm3 (0.50-1.63 mm3)] was higher than cusp/CERA [0.17 mm3 (0.04-0.41 mm3)] (P = .007). ZIR showed completely different wear mechanism in SEM. CONCLUSION. Composite structured materials such as PICN and ZLS ceramic exhibit more abrasive effect on opposing enamel due to their loss against wear, compared to uniform structured zirconia. The resin nano-ceramic causes the lowest enamel wear thanks to its flexible nano-ceramic microstructure. While zirconia appears to be an enamel-friendly material in wear volume loss, it can cause microstructural defects of enamel.

Shoulder Arthrokinematics of Collegiate Ice Hockey Athletes Based on the 3D-2D Model Registration Technique

  • Jeong, Hee Seong;Song, Junbom;Lee, Inje;Kim, Doosup;Lee, Sae Yong
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.3
    • /
    • pp.155-161
    • /
    • 2021
  • Objective: There is a lack of studies using the 3D-2D image registration techniques on the mechanism of a shoulder injury for ice hockey players. This study aimed to analyze in vivo 3D glenohumeral joint arthrokinematics in collegiate ice hockey athletes and compare shoulder scaption with or without a hockey stick using the 3D-2D image registration technique. Method: We recruited 12 male elite ice hockey players (age, 19.88 ± 0.65 years). For arthrokinematic analysis of the common shoulder abduction movements of the injury pathogenesis of ice hockey players, participants abducted their dominant arm along the scapular plane and then grabbed a stick using the same motion under C-arm fluoroscopy with 16 frames per second. Computed tomography (CT) scans of the shoulder complex were obtained with a 0.6-mm slice pitch. Data from the humerus translation distances, scapula upward rotation, anterior-posterior tilt, internal to external rotation angles, and scapulohumeral rhythm (SHR) ratio on glenohumeral (GH) joint kinematics were outputted using a MATLAB customized code. Results: The humeral translation in the stick hand compared to the bare hand moved more anterior and more superior until the abduction angle reached 40°. When the GH joint in the stick hand was at the maximal abduction of the scapula, the scapula was externally rotated 2~5° relative to 0°. The SHR ratio relative to the abduction along the scapular plane at 40° indicated a statistically significant difference between the two groups (p < 0.05). Conclusion: With arm loading with the stick, the humeral and scapular kinematics showed a significant correlation in the initial section of the SHR. Although these correlations might be difficult in clinical settings, ice hockey athletes can lead to the movement difference of the scapulohumeral joints with inherent instability.

Development of automatic assembly module for yoke parts in auto-focusing actuator (Auto-Focusing 미세부품 Yoke 조립 자동화 모듈 개발)

  • Ha, Seok-Jae;Park, Jeong-Yeon;Park, Kyu-Sub;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.55-60
    • /
    • 2019
  • Smart-phone in the recently released high-end applied to the camera module is equipped with the most features auto focusing camera module. Also, auto focusing camera module is divided into voice coil motor, encoder, and piezo according to type of motion mechanism. Auto focusing camera module is composed of voice coil motor (VCM) as an actuator and leaf spring as a guide and suspension. VCM actuator is made of magnet, yoke as a metal, and coil as a copper wire. Recently, the assembly as yoke and magnet is made by human resources. These process has a long process time and it is difficult to secure quality. Also, These process is not economical in cost, and productivity is reduced. Therefore, an automatic assembly as yoke and magnet is needed in the present process. In this paper, we have developed an automatic assembly device that can automatically assemble yoke and magnet, and performed verifying performance. Therefore, by using the developed automatic assembly device, it is possible to increase the productivity and reduce the production cost.