• 제목/요약/키워드: Motion Accuracy

검색결과 1,622건 처리시간 0.029초

서브미크론 진직도 측정장치 개발 (Development of a Submicron Order Straightness Measuring Device)

  • 박천홍;정재훈;김수태;이후상
    • 한국정밀공학회지
    • /
    • 제17권5호
    • /
    • pp.124-130
    • /
    • 2000
  • For measuring out the submicron order straightness, a precision measuring device is developed in this paper. The device is constructed with a hydrostatic feed table and a capacitive type sensor which is mounted to the feed table. Straightness is acquired as substracting the motion error of feed table from the measured profile with probe. Motion error of feed table is simultaneously compensated upto 0.120${\mu}{\textrm}{m}$ of linear motion error and 0.20arcsec of angular motion error using the active controlled capillary. Reversal method and strai호t-edge is used fur estimating the measuring accuracy and from the experimental result, it is verified that the device has the measuring accuracy 0.030m. Also, through the practical application on the measurement of ground surface, it is confirmed that the device is very effective to measure the submicron order straightness.

  • PDF

Low-Complexity Sub-Pixel Motion Estimation Utilizing Shifting Matrix in Transform Domain

  • Ryu, Chul;Shin, Jae-Young;Park, Eun-Chan
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.1020-1026
    • /
    • 2016
  • Motion estimation (ME) algorithms supporting quarter-pixel accuracy have been recently introduced to retain detailed motion information for high quality of video in the state-of-the-art video compression standard of H.264/AVC. Conventional sub-pixel ME algorithms in the spatial domain are faced with a common problem of computational complexity because of embedded interpolation schemes. This paper proposes a low-complexity sub-pixel motion estimation algorithm in the transform domain utilizing shifting matrix. Simulations are performed to compare the performances of spatial-domain ME algorithms and transform-domain ME algorithms in terms of peak signal-to-noise ratio (PSNR) and the number of bits per frame. Simulation results confirm that the transform-domain approach not only improves the video quality and the compression efficiency, but also remarkably alleviates the computational complexity, compared to the spatial-domain approach.

FEM을 이용한 유정압테이블의 운동정밀도 해서(1. 단면지지형 테이블의 해석 및 실험적 검증) (Finite Element Analysis on the Motion Accuracy of Hydrostatic Table(1.st. Analysis and Experimental Verification on Single-side Table))

  • 박천홍;정재훈;이후상;김수태
    • 한국정밀공학회지
    • /
    • 제17권12호
    • /
    • pp.137-144
    • /
    • 2000
  • In order to achieve systematical method for improving motion accuracy of hydrostatic table, an algorithm using finite element method is proposed in this paper. Quantification of averaging effect of oil film on motion error is performed theoretically by analysis on the relationship between spacial frequency of rail form error and motion error of table. Influences of film stiffness and pocket size on the motion error of table are also analyzed theoretically. Validity of the algorithm is verified experimentally from the test on the motion error of table with three types of rail which have different form profile. Experimental results show that the algorithm is very effective to analyze theoretically the motion error of hydrostatic table.

  • PDF

PSD 센서를 이용한 모션캡쳐센서의 정밀도 향상을 위한 보정에 관한 연구 (A Study on the Sensor Calibration of Motion Capture System using PSD Sensor to Improve the Accuracy)

  • 최훈일;조용준;유영기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.583-585
    • /
    • 2004
  • In this paper we will deal with a calibration method for low cost motion capture system using psd(position sensitive detection) optical sensor. To measure the incident direction of the light from LED emitted marker, the PSD is used the output current ratio on the electrode of PSD is proportional with the incident position of the light focused by lens. In order to defect the direction of the light, the current output is converted into digital voltage value by opamp circuits peak detector and AD converter with the digital value the incident position is measured. Unfortunately, due to the non-linearly problem of the circuit poor position accuracy is shown. To overcome such problems, we compensated the non-linearly by using least-square fitting method. After compensated the non-linearly in the circuit, the system showed more enhanced position accuracy.

  • PDF

배경의 특징 추적을 이용한 물체의 이동 거리 추정 및 정확도 평가 (A Distance Estimation Method of Object′s Motion by Tracking Field Features and A Quantitative Evaluation of The Estimation Accuracy)

  • 이종현;남시욱;이재철;김재희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 추계종합학술대회 논문집
    • /
    • pp.621-624
    • /
    • 1999
  • This paper describes a distance estimation method of object's motion in soccer image sequence by tracking field features. And we quantitatively evaluate the estimation accuracy We suppose that the input image sequence is taken with a camera on static axis and includes only zooming and panning transformation between frames. Adaptive template matching is adopted for non-rigid object tracking. For background compensation, feature templates selected from reference frame image are matched in following frames and the matched feature point pairs are used in computing Affine motion parameters. A perspective displacement field model is used for estimating the real distance between two position on Input Image. To quantitatively evaluate the accuracy of the estimation, we synthesized a 3 dimensional virtual stadium with graphic tools and experimented on the synthesized 2 dimensional image sequences. The experiment shows that the average of the error between the actual moving distance and the estimated distance is 1.84%.

  • PDF

고속 주축에 있어서의 예압력 변화가 회전정도에 미치는 영향 (Effect of Preload on Running Accuracy of High Speed Spindle)

  • 송창규;신영재
    • 한국공작기계학회논문집
    • /
    • 제11권2호
    • /
    • pp.65-70
    • /
    • 2002
  • The rotational performance off machine tool spindle has a direct influence upon the surface finish of the finished workpiece. This running accuracy of the spindle is improved by increasing preload on the bearings, while it results in higher temperature rise and larger thermal deformation. Therefore, finding the optimal preload condition for high speed spindle is very important factors in spindle motion. in spindle motion. In this study, the effect of the preload on the roundness accuracy has been examined at the different cutting conditions. Experiments were carried out to investigate the effects of the bearing preload on the running accuracy of high speed spindle which was supported by two angular contact bearings.

모순 검증을 통한 다중 움직임 벡터 해상도 시그널링 방법 (Signaling Method of Multiple Motion Vector Resolutions Using Contradiction Testing)

  • 원광현;박영현;전병우
    • 전자공학회논문지
    • /
    • 제52권7호
    • /
    • pp.107-118
    • /
    • 2015
  • 대부분의 비디오 압축 표준들이 1/4 부화소 정밀도와 같은 고정 움직임 벡터 해상도를 사용하고 있는 데 반해, 다중 움직임 벡터 해상도를 지원하는 형태의 구조는 비디오 콘텐츠의 성질에 따라 필요로 하는 만큼의 움직임 벡터 정밀도를 효율적으로 사용할 수 있고, 더 정확한 움직임 예측자 생성이 가능해지므로, 부호화 효율을 향상할 수 있다는 장점이 있다. 그러나 다중 움직임 벡터 해상도 구조는 각각 움직임 벡터에 대해 선택된 움직임 벡터 해상도를 추가로 시그널링 해야 한다는 문제점이 있다. 본 논문에서는 움직임 벡터 해상도의 모순 검증 기반 시그널링 구조를 제안한다. 제안 방법은 여러 개의 후보 중, 각 움직임 벡터에 대해 최소크기의 부호화율을 갖는 움직임 벡터 해상도를 선택한다. 또한, 움직임 벡터 해상도의 시그널링에 따른 오버헤드를 줄이기 위해, 부호화기 및 복호화기 양쪽에서 미리 정의된 기준을 통한 모순 검증 과정을 수행하여 시그널링 할 필요가 없는 후보 움직임 벡터 해상도를 판별하는 과정을 수행한다. 실험 결과, 제안 구조가 고정 움직임 벡터 해상도 기반의 구조와 비교하여 $Bj{\o}ntegaard$ delta bit rate (BDBR)에서 평균 약 4.01%의 이득(최대 15.17%)을 달성함으로써 부호화되는 움직임 정보의 양을 줄이는 데 효과적이라는 것을 검증하였다.

HEVC Coding Unit Mode Based Motion Frame Analysis

  • Jia, Qiong;Dong, Tianyu;Jang, Euee S.
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 하계학술대회
    • /
    • pp.52-54
    • /
    • 2021
  • In this paper we propose a method predict whether a video frame contains motion according to the invoking situation of the coding unit mode in HEVC. The motion prediction of video frames is conducive for use in video compression and video data extraction. In the existing technology, motion prediction is usually performed by high complexity computer vision technology. However, we proposed to analyze the motion frame based on HEVC coding unit mode which does not need to use the static background frame. And the prediction accuracy rate of motion frame analysis by our method has exceeded 80%.

  • PDF

Experimental Verification on the Corrective Machining Algorithm for Improving the Motion Accuracy of Hydrostatic Bearing Tables

  • Park, Chun-Hong;Lee, Chan-Hong;Lee, Husang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권3호
    • /
    • pp.62-68
    • /
    • 2004
  • Effectiveness of a corrective machining algorithm, which can construct the proper machining information to improve motion errors utilizing measured motion errors, is verified experimentally in this paper, Corrective machining process is practically applied to single and double side hydrostatic bearing tables. Lapping process is applied as a machining method. The machining information is obtained from the measured motion errors by applying the algorithm, without any information on the rail profile. In the case of the single-side table, after 3 times of corrective remachining, linear and angular motion errors are improved up to 0.13 $\mu\textrm{m}$ and 1.40 arcsec from initial error of 1.04 $\mu\textrm{m}$ and 22.71 arcsec, respectively. In the case of the double-side table, linear and angular motion error are improved up to 0.07 /$\mu\textrm{m}$ and 1.42 arcsec from the initial error of 0.32 $\mu\textrm{m}$ and 4.14 arcsec. The practical machining process is performed by an unskilled person after he received a preliminary training in machining. Experimental results show that the corrective machining algorithm is very effective and easy to use to improve the accuracy of hydrostatic tables.

원호보간시험에 의한 수치제어 공작기계의 운동오차원인 진단에 관한 연구 (Identification of motion error sources in NC machine tools by a circular interpolation test)

  • 홍성욱;신영재;이후상
    • 한국정밀공학회지
    • /
    • 제10권2호
    • /
    • pp.126-137
    • /
    • 1993
  • This paper presents an efficient method for the identification of motion error sources in NC machine tools by making use of the circular interpolation test, which is often used in estimating the motion accuracy of NC machine tools. Mathematical formulae are described for motion errors due to various kinds of error sources. Two identification formulae are proposed: one is based on the frequency analysis and the other is formulated with the weithted residual method. Motion error signal is classified into two patterns, mean errors(mean of CW and CCW test signals from mean errors). The sources of the mean errors are identified by using the frequency analysis technique and the sources of the deviation errors by the weighted residual formulaltion. A menu driven, user oriented, computer program is written to realize the full steps of the proposed identificationprocedure. Then, the identification method is applied to two NC machine tools.

  • PDF