• Title/Summary/Keyword: Morpheme Analysis

Search Result 122, Processing Time 0.025 seconds

A Morpheme Analyzer based on Transformer using Morpheme Tokens and User Dictionary (사용자 사전과 형태소 토큰을 사용한 트랜스포머 기반 형태소 분석기)

  • DongHyun Kim;Do-Guk Kim;ChulHui Kim;MyungSun Shin;Young-Duk Seo
    • Smart Media Journal
    • /
    • v.12 no.9
    • /
    • pp.19-27
    • /
    • 2023
  • Since morphemes are the smallest unit of meaning in Korean, it is necessary to develop an accurate morphemes analyzer to improve the performance of the Korean language model. However, most existing analyzers present morpheme analysis results by learning word unit tokens as input values. However, since Korean words are consist of postpositions and affixes that are attached to the root, even if they have the same root, the meaning tends to change due to the postpositions or affixes. Therefore, learning morphemes using word unit tokens can lead to misclassification of postposition or affixes. In this paper, we use morpheme-level tokens to grasp the inherent meaning in Korean sentences and propose a morpheme analyzer based on a sequence generation method using Transformer. In addition, a user dictionary is constructed based on corpus data to solve the out - of-vocabulary problem. During the experiment, the morpheme and morpheme tags printed by each morpheme analyzer were compared with the correct answer data, and the experiment proved that the morpheme analyzer presented in this paper performed better than the existing morpheme analyzer.

Morphological analysis of spoken Korean using Viterbi search (Viterbi 검색 기법을 이용한 한국어 음성 언어의 형태소 분석)

  • 김병창
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.200-203
    • /
    • 1995
  • This paper proposes a spoken Korean processing model which is extensible to large vocabulary continuous spoken Korean system. The integration of phoneme level speech recognition with natural language processing can support a sophisticated phonological/morphological analysis. The model consists of a diphone speech recognizer, a viterbi dictionaly searcher and a morpheme connectivity information checker. Two-level hierarchical TDNNs recognize newly defined Korean diphones. The diphone sequences are segmented and converted to the most probable morpheme sequences by the Viterbi dictionary searcher. The morpheme sequency are then examined by the morpheme connectivity information checker and the correct morpheme sequence which has the greatest probability is collected. The experiments show that the morphological analysis for spoken Korean can be achieved for 328 Eojeols with 80.6% success rate.

  • PDF

A Comparative Study of the Trisyllabic Words with same form-morpheme and same meaning in Modern Chinese and the Trisyllabic Korean Words Written in Chinese Characters with same form-morpheme and same meaning (현대 중국어의 삼음사(三音詞)와 현용 한국 삼음절(三音節) 한자어(漢字語)의 동형(同形) 동소어(同素語) 비교 연구)

  • CHOE, GEUM DAN
    • Cross-Cultural Studies
    • /
    • v.25
    • /
    • pp.743-773
    • /
    • 2011
  • In this research, the writer has done a comparative analysis of 4,791 trisyllabic modern Chinese vocabularies from "a dictionary for trisyllabic modern Chinese word" and the corresponding Korean words written in Chinese characters out of 170,000 vocabularies hereupon that are collected in "new age new Korean dictionar y". Aa a result, we have the total 407 pairs of corresponding group with the following 3 types: 1) Chinese : Korean 3(2) : 3 syllable Chinese characters with completely same form-morpheme and same meaning, use, class (376pairs, 92.38% of 407), 2) Chinese : Korean 3 : 3 syllable Chinese characters with completely same form-morpheme and partly same meaning, use, class (18pairs, 4.42% of 407), 3)Chinese : Korean 3 : 3 syllable Chinese characters with completely same form-morpheme and different meaning, use, class (13pairs, 3.19% of 407).

Sentiment Analysis of Korean Reviews Using CNN: Focusing on Morpheme Embedding (CNN을 적용한 한국어 상품평 감성분석: 형태소 임베딩을 중심으로)

  • Park, Hyun-jung;Song, Min-chae;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.59-83
    • /
    • 2018
  • With the increasing importance of sentiment analysis to grasp the needs of customers and the public, various types of deep learning models have been actively applied to English texts. In the sentiment analysis of English texts by deep learning, natural language sentences included in training and test datasets are usually converted into sequences of word vectors before being entered into the deep learning models. In this case, word vectors generally refer to vector representations of words obtained through splitting a sentence by space characters. There are several ways to derive word vectors, one of which is Word2Vec used for producing the 300 dimensional Google word vectors from about 100 billion words of Google News data. They have been widely used in the studies of sentiment analysis of reviews from various fields such as restaurants, movies, laptops, cameras, etc. Unlike English, morpheme plays an essential role in sentiment analysis and sentence structure analysis in Korean, which is a typical agglutinative language with developed postpositions and endings. A morpheme can be defined as the smallest meaningful unit of a language, and a word consists of one or more morphemes. For example, for a word '예쁘고', the morphemes are '예쁘(= adjective)' and '고(=connective ending)'. Reflecting the significance of Korean morphemes, it seems reasonable to adopt the morphemes as a basic unit in Korean sentiment analysis. Therefore, in this study, we use 'morpheme vector' as an input to a deep learning model rather than 'word vector' which is mainly used in English text. The morpheme vector refers to a vector representation for the morpheme and can be derived by applying an existent word vector derivation mechanism to the sentences divided into constituent morphemes. By the way, here come some questions as follows. What is the desirable range of POS(Part-Of-Speech) tags when deriving morpheme vectors for improving the classification accuracy of a deep learning model? Is it proper to apply a typical word vector model which primarily relies on the form of words to Korean with a high homonym ratio? Will the text preprocessing such as correcting spelling or spacing errors affect the classification accuracy, especially when drawing morpheme vectors from Korean product reviews with a lot of grammatical mistakes and variations? We seek to find empirical answers to these fundamental issues, which may be encountered first when applying various deep learning models to Korean texts. As a starting point, we summarized these issues as three central research questions as follows. First, which is better effective, to use morpheme vectors from grammatically correct texts of other domain than the analysis target, or to use morpheme vectors from considerably ungrammatical texts of the same domain, as the initial input of a deep learning model? Second, what is an appropriate morpheme vector derivation method for Korean regarding the range of POS tags, homonym, text preprocessing, minimum frequency? Third, can we get a satisfactory level of classification accuracy when applying deep learning to Korean sentiment analysis? As an approach to these research questions, we generate various types of morpheme vectors reflecting the research questions and then compare the classification accuracy through a non-static CNN(Convolutional Neural Network) model taking in the morpheme vectors. As for training and test datasets, Naver Shopping's 17,260 cosmetics product reviews are used. To derive morpheme vectors, we use data from the same domain as the target one and data from other domain; Naver shopping's about 2 million cosmetics product reviews and 520,000 Naver News data arguably corresponding to Google's News data. The six primary sets of morpheme vectors constructed in this study differ in terms of the following three criteria. First, they come from two types of data source; Naver news of high grammatical correctness and Naver shopping's cosmetics product reviews of low grammatical correctness. Second, they are distinguished in the degree of data preprocessing, namely, only splitting sentences or up to additional spelling and spacing corrections after sentence separation. Third, they vary concerning the form of input fed into a word vector model; whether the morphemes themselves are entered into a word vector model or with their POS tags attached. The morpheme vectors further vary depending on the consideration range of POS tags, the minimum frequency of morphemes included, and the random initialization range. All morpheme vectors are derived through CBOW(Continuous Bag-Of-Words) model with the context window 5 and the vector dimension 300. It seems that utilizing the same domain text even with a lower degree of grammatical correctness, performing spelling and spacing corrections as well as sentence splitting, and incorporating morphemes of any POS tags including incomprehensible category lead to the better classification accuracy. The POS tag attachment, which is devised for the high proportion of homonyms in Korean, and the minimum frequency standard for the morpheme to be included seem not to have any definite influence on the classification accuracy.

Implementation of A Morphological Analyzer Based on Pseudo-morpheme for Large Vocabulary Speech Recognizing (대어휘 음성인식을 위한 의사형태소 분석 시스템의 구현)

  • 양승원
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.2
    • /
    • pp.102-108
    • /
    • 1999
  • It is important to decide processing unit in the large vocabulary speech recognition system we propose a Pseudo-Morpheme as the recognition unit to resolve the problems in the recognition systems using the phrase or the general morpheme. We implement a morphological analysis system and tagger for Pseudo-Morpheme. The speech processing system using this pseudo-morpheme can get better result than other systems using the phrase or the general morpheme. So, the quality of the whole spoken language translation system can be improved. The analysis-ratio of our implemented system is similar to the common morphological analysis systems.

  • PDF

An Efficient Korean Morpheme Analyzer and Synthesizer using Dictionary Information and Chart Data Structure (사전 정보와 차트 자료 구조를 이용한 효율적인 형태소 분석기 및 합성기(KoMAS))

  • 김정해;이상조
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.3
    • /
    • pp.123-131
    • /
    • 1994
  • This paper describes on the analysis of morphemes and it's synthesis being constituted of Korean word phrases. To analyze morphemes, we propose the introduction of "morph" for morpheme features in lexicon and the usage of chart data structures. it controls over the generation of unnecessary morpheme, and extracts every possible morpheme unit in a word phrase which minimized lexicon investigation by using heuristic information. Moreover, to synthesize morphemes, it is composed of every possible analyzed morphemes in word phrases to take advantage of speech and union information which can be obtained for program. Therefore, the systhesis of analyzed morphemes were designed to aid a syntactic analysis next step of natural language processing. This system for analyzing and systhesizing morpheme was to generate a word phrase by unifying syntactic and semantic features of analyzed morphemes in lexicon, and then established by C language of the personal computer.

  • PDF

Part-Of-Speech Tagging and the Recognition of the Korean Unknown-words Based on Machine Learning (기계학습에 기반한 한국어 미등록 형태소 인식 및 품사 태깅)

  • Choi, Maeng-Sik;Kim, Hark-Soo
    • The KIPS Transactions:PartB
    • /
    • v.18B no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Unknown morpheme errors in Korean morphological analysis are divided into two types: The one is the errors that a morphological analyzer entirely fails to return any morpheme sequences, and the other is the errors that a morphological analyzer returns incorrect combinations of known morphemes. Most previous unknown morpheme estimation techniques have been focused on only the former errors. This paper proposes a unknown morpheme estimation method which can handle both of the unknown morpheme errors. The proposed method detects Eojeols (Korean spacing units) that may include unknown morpheme errors using SVM (Support Vector Machine). Then, using CRFs (Conditional Random Fields), it segments morphemes from the detected Eojeols and annotates the segmented morphemes with new POS tags. In the experiments, the proposed method outperformed the conventional method based on the longest matching of functional words. Based on the experimental results, we knew that the second type errors should be dealt with in order to increase the performance of Korean morphological analysis.

Morpheme Conversion for korean Text-to-Sign Language Translation System (한국어-수화 번역시스템을 위한 형태소 변환)

  • Park, Su-Hyun;Kang, Seok-Hoon;Kwon, Hyuk-Chul
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.3
    • /
    • pp.688-702
    • /
    • 1998
  • In this paper, we propose sign language morpheme generation rule corresponding to morpheme analysis for each part of speech. Korean natural sign language has extremely limited vocabulary, and the number of grammatical components eing currently used are limited, too. In this paper, therefore, we define natural sign language grammar corresponding to Korean language grammar in order to translate natural Korean language sentences to the corresponding sign language. Each phrase should define sign language morpheme generation grammar which is different from Korean language analysis grammar. Then, this grammar is applied to morpheme analysis/combination rule and sentence structure analysis rule. It will make us generate most natural sign language by definition of this grammar.

  • PDF

Error Correction in Korean Morpheme Recovery using Deep Learning (딥 러닝을 이용한 한국어 형태소의 원형 복원 오류 수정)

  • Hwang, Hyunsun;Lee, Changki
    • Journal of KIISE
    • /
    • v.42 no.11
    • /
    • pp.1452-1458
    • /
    • 2015
  • Korean Morphological Analysis is a difficult process. Because Korean is an agglutinative language, one of the most important processes in Morphological Analysis is Morpheme Recovery. There are some methods using Heuristic rules and Pre-Analyzed Partial Words that were examined for this process. These methods have performance limits as a result of not using contextual information. In this study, we built a Korean morpheme recovery system using deep learning, and this system used word embedding for the utilization of contextual information. In '들/VV' and '듣/VV' morpheme recovery, the system showed 97.97% accuracy, a better performance than with SVM(Support Vector Machine) which showed 96.22% accuracy.

Sentiment Analysis Using Deep Learning Model based on Phoneme-level Korean (한글 음소 단위 딥러닝 모형을 이용한 감성분석)

  • Lee, Jae Jun;Kwon, Suhn Beom;Ahn, Sung Mahn
    • Journal of Information Technology Services
    • /
    • v.17 no.1
    • /
    • pp.79-89
    • /
    • 2018
  • Sentiment analysis is a technique of text mining that extracts feelings of the person who wrote the sentence like movie review. The preliminary researches of sentiment analysis identify sentiments by using the dictionary which contains negative and positive words collected in advance. As researches on deep learning are actively carried out, sentiment analysis using deep learning model with morpheme or word unit has been done. However, this model has disadvantages in that the word dictionary varies according to the domain and the number of morphemes or words gets relatively larger than that of phonemes. Therefore, the size of the dictionary becomes large and the complexity of the model increases accordingly. We construct a sentiment analysis model using recurrent neural network by dividing input data into phoneme-level which is smaller than morpheme-level. To verify the performance, we use 30,000 movie reviews from the Korean biggest portal, Naver. Morpheme-level sentiment analysis model is also implemented and compared. As a result, the phoneme-level sentiment analysis model is superior to that of the morpheme-level, and in particular, the phoneme-level model using LSTM performs better than that of using GRU model. It is expected that Korean text processing based on a phoneme-level model can be applied to various text mining and language models.