• Title/Summary/Keyword: Monte Carlo Noise

Search Result 223, Processing Time 0.027 seconds

Design of Non-Parametric Detectors with MMSE (최소평균자승에러 알고리듬을 이용한 non-parametric 검파기 설계)

  • 공형윤
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.171-174
    • /
    • 1998
  • A class of non-parametric detectors based on quantized m-dimensional noise sample space is introduced. Due to assuming the nongaussian noise as a channel model, it is not easy to design the detector through estimating the unknown functional form of noise; instead equiprobably partitioning m-dimensional noise into a finite number of regions, using a VQ and quantiles obtained by RMSA algorithm is used in this paper to design detectors. To show the comparison of performance between single sample detector and system suggested here, Monte-Carlo simulations were used. The effect of signal pulse shape on the receiver performance is analyzed too.

  • PDF

Stochastic response of colored noise parametric system

  • Heo, Hoon;Paik, Jong-Han;Oh, Jin-Hyoung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.451-455
    • /
    • 1993
  • Interaction between system and disturbance results in system with time-dependent parameter. Parameter variation due to interaction has random characteristics. Most of the randomly varying parameters in control problem is regarded as white noise random process which is not a realistic model. In real situation those random variation is colored noise random process. Modified F-P-K equation is proposed to get the response of the random parametric system using some correction factor. Proposed technique is employed to obtain the colored noise parametric system response and confirmed via Monte-Carlo Simulation.

  • PDF

Performance Analysis of Amplify-and-Forward Relaying in Cooperative Networks with Partial Relay Selection (부분 중계노드 선택 기반의 협력 네트워크에서 증폭 후 전송 방식에 대한 성능분석)

  • Hwang, Ho-seon;Ahn, Kyung-seung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2317-2323
    • /
    • 2015
  • In this paper, we analyze the performance of dual-hop amplify-and-forward (AF) relaying in cooperative networks with partial relay selection. An AF relay gain considered in this paper includes channel-noise-assisted relay gain. Leveraging a received signal-to-noise ratio (SNR) model, we derive exact closed-form expressions for the probability density function (pdf) and cumulative distribution function (cdf) of the end-to-end SNR. Moreover, an exact closed-form expression of the ergodic capacity for dual-hop AF relaying with channel-noise-assisted relay gain and partial relay selection is investigated. The analytical results shown in this paper are confirmed by Monte-Carlo simulations.

STUDY OF CORE SUPPORT BARREL VIBRATION MONITORING USING EX-CORE NEUTRON NOISE ANALYSIS AND FUZZY LOGIC ALGORITHM

  • CHRISTIAN, ROBBY;SONG, SEON HO;KANG, HYUN GOOK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.2
    • /
    • pp.165-175
    • /
    • 2015
  • The application of neutron noise analysis (NNA) to the ex-core neutron detector signal for monitoring the vibration characteristics of a reactor core support barrel (CSB) was investigated. Ex-core flux data were generated by using a nonanalog Monte Carlo neutron transport method in a simulated CSB model where the implicit capture and Russian roulette technique were utilized. First and third order beam and shell modes of CSB vibration were modeled based on parallel processing simulation. A NNA module was developed to analyze the ex-core flux data based on its time variation, normalized power spectral density, normalized cross-power spectral density, coherence, and phase differences. The data were then analyzed with a fuzzy logic module to determine the vibration characteristics. The ex-core neutron signal fluctuation was directly proportional to the CSB's vibration observed at 8Hz and15Hzin the beam mode vibration, and at 8Hz in the shell mode vibration. The coherence result between flux pairs was unity at the vibration peak frequencies. A distinct pattern of phase differences was observed for each of the vibration models. The developed fuzzy logic module demonstrated successful recognition of the vibration frequencies, modes, orders, directions, and phase differences within 0.4 ms for the beam and shell mode vibrations.

A Study on the Optimal Make of X-ray Ionizer using the Monte Carlo N-Particle Extended Code(II) (Monte Carlo N-Particle Extended Code를 이용한 연 X선 정전기제거장치의 최적제작에 관한 연구(II))

  • Jeong, Phil Hoon;Lee, Dong Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.29-33
    • /
    • 2017
  • In order to solve this sort of electrostatic failure in Display and Semiconductor process, Soft X-ray ionizer is mainly used. Soft X-ray Ionizer does not only generate electrical noise and minute particle but also is efficient to remove electrostatic as it has a wide range of ionization. There exist variable factors such as type of tungsten thickness deposited on target, Anode voltage etc., and it takes a lot of time and financial resource to find optimal performance by manufacturing with actual X-ray tube source. Here, MCNPX (Monte Carlo N-Particle Extended) is used for simulation to solve this kind of problem, and optimum efficiency of X-ray generation is anticipated. In this study, X-ray generation efficiency was compared according to target material thickness using MCNPX and actual X-ray tube source under the conditions that tube voltage is 5 keV, 10 keV, 15 keV and the target Material is Tungsten(W). At the result, In Tube voltage 5 keV and distance 100 mm, optimal target thickness is $0.05{\mu}m$ and fastest decay time appears + decay time 0.28 sec. - deacy time 0.30 sec. In Tube voltage 10keV and distance 100 mm, optimal target Thickness is $0.16{\mu}m$ and fastest decay time appears + decay time 0.13 sec. - deacy time 0.12 sec. In the tube voltage 15 keV and distance 100 mm, optimal target Thickness is $0.28{\mu}m$ and fastest decay time appears + decay time 0.04 sec. - deacy time 0.05 sec.

Neutron Induced Capture Gamma Spectroscopy Sonde Design and Response Analysis Based on Monte Carlo Simulation (Monte Carlo 시물레이션에 기초한 포획모드 중성자-감마 스펙트럼 존데 설계 및 반응 분석)

  • Won, Byeongho;Hwang, Seho;Shin, Jehyun;Kim, Jongman;Kim, Ki-Seog;Park, Chang Je
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.3
    • /
    • pp.154-161
    • /
    • 2015
  • For efficiently designing neutron induced gamma spectroscopy sonde, Monte Carlo simulation is employed to understand a dominant location of thermal neutron and classify the formation elements from the energy peak of capture gamma spectrum. A pulsed neutron generator emitting 14 MeV neutron particles was used as a source, and flux of thermal neutron was calculated from the twelve detectors arranged at each 10 cm intervals from the source. Design for reducing borehole effects using shielding materials was also applied to numerical sonde model. Moreover, principal elements and quantities of numerical earth models were verified through the energy spectrum analysis of capture gamma detected from a gamma detector. These results can help to enhance the signal-to-noise ratio, and determine an optimal placement of capture gamma detectors of neutron induced gamma spectroscopy sonde.

A Study on the Optimization of TCM System in the Impulsive Noise Environment (임펄스잡음 환경하에서의 TCM 방식 최적화에 관한 연구)

  • 고성찬;송재철;최형진
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.3
    • /
    • pp.15-24
    • /
    • 1992
  • In this paper, the performance evaluation of coded 8PSK TCM system is presented which is evaluated on the basis of the software simulator developed by Monte-Carlo simulation method. The Gaussian noise as well as Gaussian/Impulsive noise are used for the system channel. The required basic concepts for developing a S/W simulator applicable to TCM system are presented and the decoding memory length cosidered as optimal is determined.

  • PDF

SURE-based-Trous Wavelet Filter for Interactive Monte Carlo Rendering (몬테카를로 렌더링을 위한 슈어기반 실시간 에이트러스 웨이블릿 필터)

  • Kim, Soomin;Moon, Bochang;Yoon, Sung-Eui
    • Journal of KIISE
    • /
    • v.43 no.8
    • /
    • pp.835-840
    • /
    • 2016
  • Monte Carlo ray tracing has been widely used for simulating a diverse set of photo-realistic effects. However, this technique typically produces noise when insufficient numbers of samples are used. As the number of samples allocated per pixel is increased, the rendered images converge. However, this approach of generating sufficient numbers of samples, requires prohibitive rendering time. To solve this problem, image filtering can be applied to rendered images, by filtering the noisy image rendered using low sample counts and acquiring smoothed images, instead of naively generating additional rays. In this paper, we proposed a Stein's Unbiased Risk Estimator (SURE) based $\grave{A}$-Trous wavelet to filter the noise in rendered images in a near-interactive rate. Based on SURE, we can estimate filtering errors associated with $\grave{A}$-Trous wavelet, and identify wavelet coefficients reducing filtering errors. Our approach showed improvement, up to 6:1, over the original $\grave{A}$-Trous filter on various regions in the image, while maintaining a minor computational overhead. We have integrated our propsed filtering method with the recent interactive ray tracing system, Embree, and demonstrated its benefits.

Comparison Between Two Analytical Solutions for Random Vibration Responses of a Spring-Pendulum System with Internal Resonance (내부공진을 가진 탄성진자계의 불규칙 진동응답을 위한 두 해석해의 비교)

  • 조덕상;이원경
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.715-722
    • /
    • 1998
  • An investigation into the stochastic bifurcation and response statistics of an autoparameteric system under broad-band random excitation is made. The specific system examined is a spring-pendulum system with internal resonance, which is known to be a good model for a variety of engineering systems, including ship motions with nonlinear coupling between pitching and rolling motions. The Fokker-Planck equations is used to genrage a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian and non-Gaussian closure methods the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinanary differential equations. In view of equilibrium solutions of this system and their stability we examine the stochastic bifurcation and response statistics. The analytical results are compared with results obtained by Monte Carlo simulation.

  • PDF

Performance Analysis of Turbo Encoded Parallel Interference Canceller on Rayleigh Fading Channel (Rayleigh 페이딩 채널에서 터보부호화 병렬간섭제거기의 성능분석)

  • 박재오;이정재
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.4
    • /
    • pp.65-70
    • /
    • 2001
  • In this paper a new scheme combining the turbo coder with parallel interference canceller, which effectively mitigates the effects of multiple access interferences and Ralyeigh fades in the DS-CDAM mobile communication systems is proposed Using the Monte-Carlo simulation, the performance of this scheme in terms of the number of users and signal to noise ration under AWGN and Ralyeigh fading environment is analyzed. The results of simulations show that the proposed scheme outperforms conventional CDMA receiver systems over Rayleigh fading as well as AWGN.

  • PDF