• Title/Summary/Keyword: Monte Carlo Noise

Search Result 223, Processing Time 0.026 seconds

Error Rate and Capacity Analysis for Incremental Hybrid DAF Relaying using Polar Codes

  • Madhusudhanan, Natarajan;Venkateswari, Rajamanickam
    • ETRI Journal
    • /
    • v.40 no.3
    • /
    • pp.291-302
    • /
    • 2018
  • The deployment of an incremental hybrid decode-amplify and forward relaying scheme is a promising and superior solution for cellular networks to meet ever-growing network traffic demands. However, the selection of a suitable relaying protocol based on the signal-to-noise ratio threshold is important in realizing an improved quality of service. In this paper, an incremental hybrid relaying protocol is proposed using polar codes. The proposed protocol achieves a better performance than existing turbo codes in terms of capacity. Simulation results show that the polar codes through an incremental hybrid decode-amplify-and-forward relay can provide a 38% gain when ${\gamma}_{th(1)}$ and ${\gamma}_{th(2)}$ are optimal. Further, the channel capacity is improved to 17.5 b/s/Hz and 23 b/s/Hz for $2{\times}2$ MIMO and $4{\times}4$ MIMO systems, respectively. Monte Carlo simulations are carried out to achieve the optimal solution.

Analysis of Random Ship Rolling Using Partial Stochastic Linearization (통계적 부분선형화 방법을 이용한 선체의 불규칙 횡동요 운동의 해석)

  • Dong-Soo Kim;Won-Kyoung Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.37-41
    • /
    • 1995
  • In order to analyze the rolling motion of a ship in random beam waves we use the partial stochastic linearization method. The quadratic damping and the nonlinear restoring moments given by the odd polynomials up to the 11th order are added to a single degree of freedom linear equation of roll motion. The irregular excitation moment is assumed to be the Gaussian white noise. The statistical characteristics of the response by the partial stochastic linearization method is compared with results by the equivalent linearization method and Monte Carlo simulation. It is fecund that the partial stochastic linearization method is not necessarily superior to the equivalent linearization method.

  • PDF

Satellite Orbit Determination using the Particle Filter

  • Kim, Young-Rok;Park, Sang-Young
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.25.4-25.4
    • /
    • 2011
  • Various estimation methods based on Kalman filter have been applied to the real-time satellite orbit determination. The most popular method is the Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF). The EKF is easy to implement and to use on orbit determination problem. However, the linearization process of the EKF can cause unstable solutions if the problem has the inaccurate reference orbit, sparse or insufficient observations. In this case, the UKF can be a good alternative because it does not contain linearization process. However, because both methods are based on Gaussian assumption, performance of estimation can become worse when the distribution of state parameters and process/measurement noise are non-Gaussian. In nonlinear/non-Gaussian problems the particle filter which is based on sequential Monte Carlo methods can guarantee more exact estimation results. This study develops and tests the particle filter for satellite orbit determination. The particle filter can be more effective methods for satellite orbit determination in nonlinear/non-Gaussian environment.

  • PDF

Performance Evaluation of Direct Broadcasting Satellite Channel using a MC and QA Method (MC기법과 QA기법을 이용한 직접위성방송채널 성능평가)

  • 정지원;조형래;고성찬
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.4
    • /
    • pp.839-847
    • /
    • 1999
  • This paper presents the performance evaluation of direct broadcasting satellite by monte-carlo(MC) and quasi-analytic(QA) simulation method in the existence of uplink/downlink adjacent channel interference(ACI), co-channel interference(CCI), and gaussian noise. Korea's satellite system parameters and link design are used at the simulation. MC and QA simulation methods are a valuable adjunct to analytical performance.

  • PDF

The effect of electrodes' allocation on single dipole source tracing in EEG (전극 배치가 EEG의 Single Dipole Source 추정에 끼치는 영향에 관한 연구)

  • Park, K.B.;Kim, D.W.;Bae, B.H.;Kim, S.Y.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.131-133
    • /
    • 1994
  • 뇌전위 측정에 의해 흥분 뉴런군의 위치를 추정하는 source localization problem은 Evoked Potential 해석법에 있어서 매우 중요한 의미를 갖는다. 이번 논문에서는 EEG실험에서의 전극 배치가 S/N(signal to noise ratio)과 추정 오차 사이에 어떤 영향을 미치는 가를 Monte Carlo 시뮬레이션으로 조사하였다. 머리 모델은 3중 구각 모델을 사용하였고 이론 이용하여 forward problem을 계산하였다. 쌍극자 파라미터를 minimization 하는 문제는 simplex method를 이용하여 계산하였다. 컴퓨터 시뮬레이션 결과, 특이한 점은 전극의 밀도와 입체각에 의해 쌍자 파라미터 오차가 변화했다는 사실이다. 이것은 곧바로 전극 배치와 연관이 된다. 실제 EEG 실험에서 전극 배치를 어떻게 했는가에 따라 그에 따른 오차가 변화한다. 이러한 오차의 원인을 제거하기 위해서 새로운 전극 배치를 모델링하여 기존의 전극 배치와 비교해 보았다. 그 결과 전극 밀도와 입체각에 대한 오차를 크게 줄일 수 있었다.

  • PDF

Direct implementation of stochastic linearization for SDOF systems with general hysteresis

  • Dobson, S.;Noori, M.;Hou, Z.;Dimentberg, M.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.5
    • /
    • pp.473-484
    • /
    • 1998
  • The first and second moments of response variables for SDOF systems with hysteretic nonlinearity are obtained by a direct linearization procedure. This adaptation in the implementation of well-known statistical linearization methods, provides concise, model-independent linearization coefficients that are well-suited for numerical solution. The method may be applied to systems which incorporate any hysteresis model governed by a differential constitutive equation, and may be used for zero or non-zero mean random vibration. The implementation eliminates the effort of analytically deriving specific linearization coefficients for new hysteresis models. In doing so, the procedure of stochastic analysis is made independent from the task of physical modeling of hysteretic systems. In this study, systems with three different hysteresis models are analyzed under various zero and non-zero mean Gaussian White noise inputs. Results are shown to be in agreement with previous linearization studies and Monte Carlo Simulation.

A Comparative Study of the Effects of Gibbs Smoothing Priors in Bayesian Tomographic Reconstruction (Bayesian Tomographic 재구성에 있어서 Gibbs Smoothing Priors의 효과에 대한 비교연구)

  • Lee, S.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.279-282
    • /
    • 1997
  • Bayesian reconstruction methods for emission computed tomography have been a topic of interest in recent years, partly because they allow for the introduction of prior information into the reconstruction problem. Early formulations incorporated priors that imposed simple spatial smoothness constraints on the underlying object using Gibbs priors in the form of four-nearest or eight-nearest neighbors. While these types of priors, known as "membrane" priors, are useful as stabilizers in otherwise unstable ML-EM reconstructions, more sophisticated prior models are needed to model underlying source distributions more accurately. In this work, we investigate whether the "thin plate" model has advantages over the simple Gibbs smoothing priors mentioned above. To test and compare quantitative performance of the reconstruction algorithms, we use Monte Carlo noise trials and calculate bias and variance images of reconstruction estimates. The conclusion is that the thin plate prior outperforms the membrane prior in terms of bias and variance.

  • PDF

Statistical Analysis on Frequency Estimation of Multiple Sinusoids from EV with a Data based Covariance Matrix (데이터 기초의 공분산 행렬로 구성된 EV 방법으로부터 다중 정현파의 주파수 추정에 관한 통계적 분석)

  • Ahn, Tae-Chon;Tak, Hyun-Su;Choi, Byung-Yun
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.453-456
    • /
    • 1992
  • A Data-based Covariance Matrix(DCM) is introduced in the Eigenvector(EV) method, among subspace methods of estimating multiple sinusoidal frequencies from finite white noisy measurements. It is shown that the EV with the DCM can obtain the true. frequencies from finite noiseless data Some asymptotic results and further improvement on the DCM are also presented mathematically. Monte-carlo simulations are statistically conducted from the view-points of means and standard deviations in the EV's of DCM and Conventional Covariance Matrix(CCM). Simulations show a great promise for using the DCM, particularly for the cases of short data records, closely spaced frequencies and high signal-to-noise ratios.

  • PDF

Detection and Diagnosis of Sensor Faults for Unknown Sensor Bias in PWR Steam Generator

  • Kim, Bong-Seok;Kang, Sook-In;Lee, Yoon-Joon;Kim, Kyung-Youn;Lee, In-Soo;Kim, Jung-Taek;Lee, Jung-Woon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.86.5-86
    • /
    • 2002
  • The measurement sensor may contain unknown bias in addition to the white noise in the measurement sequence. In this paper, fault detection and diagnosis scheme for the measurement sensor is developed based on the adaptive estimator. The proposed scheme consists of a parallel bank of Kalman-type filters each matched to a set of different possible biases, a mode probability evaluator, an estimate combiner at the outputs of the filters, a bias estimator, and a fault detection and diagnosis logic. Monte Carlo simulations for the PWR steam generator in the nuclear power plant are provided to illustrate the effectiveness of the proposed scheme.

  • PDF

Successive Interference Cancellation for the Uplink of MC-CDMA Systems with Multiple Receive Antennas

  • Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.2
    • /
    • pp.61-65
    • /
    • 2009
  • Successive interference cancellation(SIC) for the uplink of MC-CDMA mobile communications systems is an effective method to improve performance. We propose a successive interference cancellation(SIC) technique for the uplink of MC-CDMA mobile systems with multiple receive antennas. The destination uses optimum combining(OC) to combine the signals from an OFDM Demodulator with multiple receiving antennas, and applies SIC processing to the combined signals. Achieved interference cancellation order is depends on the signal to interference-plus-noise ratio (SINR) at the output of the optimum combiner. Monte-Carlo simulations are employed to verify the proposed technique.