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Abstract

Bayesian reconstruction methods for emission
computed tomography have been a topic of interest
in recent years, partly because they allow for the
introduction of prior information into the reconstruction
problem. Early formulations incorporated priors that
imposed simple spatial smoothness constraints on the
underlying object using Gibbs priors in the form of
four-nearest or eight-nearest neighbors. While these
types of priors, known as “membrane” priors, are
useful as stabilizers in otherwise unstable ML-EM
reconstructions, more sophisticated prior models are
needed to model underlying source distributions more
accurately. In this work, we investigate whether the
“thin plate” model has advantages over the simple
Gibbs smoothing priors mentioned above. To test and
compare quantitative performance of the reconstruction
algorithms, we use Monte Carlo noise trials and
calculate bias and variance images of reconstruction
estimates. The conclusion is that the thin plate prior
outperforms the membrane prior in terms of bias and
variance.

I. INTRODUCTION

The objective of emission computed tomography
(ECT), such as single-photon emission computed
tomography (SPECT) and positron emission
tomography (PET), is to determine the 3-D distribution
of radionuclide concentrations within the body using
2-D projectional views acquired at many different
angles about the patient. Since ECT systems in
practice, however, inherently involve noise and several
physical factors that degrade the projection data,
the quality of image reconstructions is extremely
poor when the projection is modeled as a simple line
integral, as in the case of deterministic methods. On
the other hand, probabilistic reconstruction methods
are attractive in that the statistical nature of emission
processes can naturally be expressed in reconstruction

algorithms by modeling the statistical character of the
observed data.

Although well-known maximum likelihood (ML)
approaches using the expectation maximization (EM)
algorithm is attractive in that it can naturally express
accurate system models of physical effects, and can
accurately model the statistical character of the data,
it is known to be unstable for the noise levels and
numbers of measurements that characterize ECT. In
contrast, maximum a posteriori (MAP) approaches in
the context of a Bayesian framework overcome this
instability by incorporating prior information while
retaining the above advantages of ML-EM approaches.
The prior information may also be regarded as
reflecting assumptions about the spatial properties of
the underlying source distribution. Many priors have
been proposed; some of these implicitly model the
underlying radionuclide density as globally smooth
[1, 2], and others extend the smoothness model by
allowing for spatial discontinuities [3, 4]. Discontinuity
preservation is associated with a smoothing penalty
that is a nonquadratic function [3] of nearby pixel
differences, whereas conventional (e.g. membrane)
smoothing priors use quadratic penalties. The
nonquadratic priors can exhibit good performance, but
suffer difficulties in optimization and hyperparameter
estimation. On the other hand, quadratic smoothing
priors may not perform as well in edge regions as
nonquadratic priors, but the simpler quadratic versions
are more amenable to useful theoretical analyses even
when couched in nonlinear Bayesian algorithms, and
present an easier hyperparameter estimation problem
[5). In this paper we compare, by using Monte Carlo
noise trials, the quantitative performance of the
quadratic smoothing priors — the membrane (MM) and
the thin plate (TP) [6].

II. BAYESIAN RECONSTRUCTION MODELS

The MAP approach in the context of a Bayesian
framework is to estimate the underlying source field £
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by maximizing the posterior probability, given as

Pr(G = g[F = f)Pr(F =f)
Pr(G = g) ’

PiF=f|G=g)=

where f and g are 2-D vector fields for the source
intensities and projection data, respectively. Given the
posterior distribution in (??), maximizing the posterior
distribution is equivalent to minimizing —log of the
posterior probability and the MAP estimation reduces
to

f =arg mfin[— log Pr(G = g|F = f)—log Pr(F = f)],

where the two terms on the right side are the likelihood
and the prior, respectively. For the likelihood, Poisson
statistics are applied in a conventional way.

To incorporate the MM and TP priors in a MAP
approach, we model the prior probability as a Gibbs
distribution

1
Pr(F = f) = — exp[-AE(f)],
where f is the 2-D source distribution comprising pixel
components f;;, E the associated Gibbs prior energy
function, Z a normalization of no concern here, and
A the positive hyperparameter that weights the prior
relative to the likelihood term. The energy E(f), is
given, for MM, as:
Exm(f) = [£2(0,5) + £3,4)]
67
with discretizations of first partial derivatives given by
fo(i,3) = fijor — fijand £u(3,5) = fiyrj — fij.
For the thin plate, the energy is

ETP(f) = Z [f}%h (2:]) + 2f}%v (z’]) + f3v(z9])] .

Here, f,v (%, 7) and fra (3, j) denote the discrete second
partial -derivatives of the source distribution in the
vertical and horizontal directions, respectively, and

Jho(3,7) is the second partial cross derivative. Our
choices for discretization of the derivatives are:
Fon(8,5) = fijer—2fij+ fij—1
fou(4,7) = fixrj = 2fij + fim1,
fro($,3) = fixr41 — fizrj — fije1 + fij.
Since the noise properties of the MAP

reconstruction estimate depend on the algorithm, we
tried two algorithms. One was the iterative MAP-EM
OSL (one-step-late) algorithm derived by Green [7].
The OSL algorithm is not derivable directly from a
MARP principle, but can be shown to converge to the
MAP solution if it converges at all. It has the advantage
of simplicity (it is a simple modification of ML-EM)
but does not always converge. (The OSL simulations
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reported here were results of convergent iterations.)
The OSL algorithm is given by:

2k
L I3 Z His,ijgre
(%) -
Yoo Heois + A %Efﬁl 0 Ekl Hie klfkt
' f:j=f‘-j

where f,’; is the object estimate at location (3, j)
and iteration k, g;s the number of detected counts in
the detector bin indexed by t at angle 8, M., the
probability that a photon emitted from source location
(7, 7) hits detector bin t at angle 8, and E stands for the
energy of either prior.

We also used a version of ICM (iterated conditional
modes), that avoids the convergence problems of OSL,
but takes longer to stabilize. A derivation that follows
the one in [8] yields the following update equations:

fk+1
'(Zw Hw,.‘j-2'\Xa)+\/(zw Hig,i;—22X3)248A X3 X,
IAX, ’
where
X d:fz Heo »Jf.J
Zkl Heo "lsz

and, for the MM prior,

X2 = 4

Xs = fk+1 +fk,f11+fik,j+1 +fik+1,]»
while for the TP prior,
X = 20
Xs = 8§ lk+llj + f:k;rll + filfj+1 + ff-n,j)

—2(f,k+111 1 + fE, g+t T+ f"k“ a-1t f’ﬂl’j“)
(Pt A+ Flyra + )

Note that a ICM uses a raster-scan update in which
each pixel is replaced as soon as it is updated. The
superscripting in the expressions for X5 and X3 reflects
this.

III. SIMULATION PROCEDURE

Figure 1 shows the 2-D (64 x 64) phantoms, A,
B and C. The mathematical phantom A is designed
to illustrate the bias advantage of the thin plate,
particularly in cold regions delimited by soft edges.
Phantom B comprises a constant background region
with a blobby hot spot and blobby cold spot. The both
cold and hot regions have 10 pixel diameter, and their
contrast relative to the base circle (53 pixel diameter) is
70%. Figure 1(c) shows a realistic [5] rCBF phantom C
obtained from primate autoradiograph [9] of the
SPECT agent Tc-99m ECD. In particular, note the
variety of edge structures in phantom C.

For a given phantom and noise level, we generated
50 Monte Carlo noise trials by adding independent
realizations of Poisson noise to the noiseless projection
data. Reconstructions were performed as described
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c)
Fig. 164 x 64 phantoms used in the simulations. (a) phantom

A (b) phantom B (c) phantom C, primate autoradiograph
phantom obtained with the blood flow agent (Tc-99m ECD).

(2} (b}

below, and the sample bias and variance of the 50
reconstructions computed at each point to derive bias
and variance images.

Since ML-EM diverges in rmse, and we need to fix
stopping criteria with which to conduct comparisons.
(This is qualitatively equivalent to defining an optimal
A for MM and TP For a given phantom and count
level, we choose two stopping criteria and designate
the resulting reconstructions as EM-1 and EM-2,
respectively. EM-1 is chosen by observing the iteration
number at which reconstructions minimize rmse
(this number is quite stable); hence the strategy for
EM-1 is also a minimal rmse criterion as for TP and
MM. Unlike the stable (after transients) MM and TP
reconstructions, ML-EM bias and variance continually
trade off as iterations proceed, and EM-1 yields only
one choice along the bias-variance curve. We thus
included a second (EM-2) criterion based on the
simple heuristic of choosing, for given phantom/count
level, that iteration number that optimizes qualitative
resemblance of reconstruction and phantom, based
on our own subjective impression. (This number was
surprisingly stable.)

Since the ICM algorithm and (stable) OSL
algorithm are iterative, we needed to choose a sufficient
number of iterations after which the change in
reconstruction was negligible. Thus, iteration number

is removed as a parameter in comparisons involving
MM and TP.

IV. RESULTS

To get increased dynamic range in the displays,
we compute the standard deviation (STD) image
(= +/variance) at each point; intensity (lighter means
greater) codes the positive STD value. Bias images
are bipolar, with a value of zero displayed as an
intermediate grey, and with darker/lighter regions
corresponding to negative/positive bias. A given figure
comprises images displayed with same grey scale to
allow visual comparisons.

Anecdotal reconstructions for each of the four
estimators (EM-1, EM-2, MAP-MM, and MAP-TP)
are shown for phantom A (Fig. 2), phantom B (Fig. 3)
and phantom C (Fig. 4).

For the bias/variance results for Phantom A,
shown in Fig. 5, we used the OSL algorithm for MAP

{ )
Fig. 2 Anecdotal reconstructions for phantom A. (a) EM-1
(b) EM-2 (¢) OSL-MM (d) OSL-TP

(a) ®) (©) (d)

Fig. 3 Anecdotal reconstructions for phantom B. (a) EM-1 (b)
EM-2 (c) ICM-MM (d) ICM-TP

(a) (b) ©) )

Fig. 4 Anecdotal reconstructions for phantom C. (a) EM-1 (b)
EM-2 (c) OSL-MM (d) OSL-TP

(e) €3] (8) (h)
Fig. 5 Pointwise bias-STD images for phantom A. (a) bias
EM-1 (b) bias EM-2 (c) bias OSL-MM (d) bias OSL-TP
(e) STD EM-1 (f) STD EM-2 (g) STD OSL-MM ¢h) STD
OSL-TP

estimates. We used a noise level corresponding to
500K counts, 18 and 80 iterations for EM-1 and
EM-2, respectively, and 200 iterations for both the
OSL-MM and OSL-TP algorithms. Values of A = 0.37
and 0.12 were computed for OSL-MM and OSL-TP,
respectively. Comparison of Figs. 5(a)(e) with
Figs. 5(b)(f) shows the usual bias/variance tradeoff
inherent in ML-EM. Fewer iterations (Figs. 5(a)(e))
lead to lower variance but high bias, and the opposite
is true for the larger number of iterations used in
Figs. 5(b)(f). Note that the STD images (Figs. 5(e)(f))
resemble the phantom itself, a well known behavior
of ML-EM, and that the bias is negative in high-count
regions, and positive in low-count regions. The MAP
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© ® ® (h)
Fig. 6 Pointwise bias-STD images for phantom B. (a) bias
EM-1 (b) bias EM-2 (c) bias ICM-MM (d) bias ICM-TP
(e) STD EM-1 (f) STD EM-2 (g) STD ICM-MM (h) STD
ICM-TP

@ ) © )
© ® ® h)

Fig. 7 Pointwise bias-STD images for phantom C. (a) bias
EM-1 (b) bias EM-2 (c¢) bias OSL-MM (d) bias OSL-TP
(e) STD EM-1 (f) STD EM-2 (g) STD OSL-MM (h) STD
OSL-TP

results, Figs. 5(c)(g) and (d)(h) again show the TP
advantage. The bias, especially in the cold region, is
considerably reduced relative to MM, and the variance
is increases slightly.

For the bias/variance results for Phantom B,
shown in Fig. 6, we used the ICM algorithm for
MAP estimates. We used a noise level corresponding
to 300K counts, 7 and 40 iterations for EM-1 and
EM-2, respectively, and 400 iterations for both
the ICM-MM and ICM-TP algorithms. Values of
A = 3.1 and 3.7 were computed for ICM-MM and
ICM-TP, respectively. Comparison of Figs. 6(a)(e)
with Figs. 6(b)(f) again shows the usual bias/variance
tradeoff inherent in ML-EM. The MAP results,
Figs. 6(c)(g) and (d)(h) again show the TP advantage.
For each lesion, the typical undershoot/overshoot bias
effects seen clearly in Fig. 6(c) are lessened by the TP
prior. The variance for both ICM-MM and ICM-TP
estimates is uniform and low.

Bias/variance results, shown for the complex
phantom C in Fig. 7, illustrate the same general
behaviors. Here MAP estimates were computed
using the OSL algorithm. We used a noise level
corresponding to 300K counts, 18 and 60 iterations for
EM-1 and EM-2, respectively, and 200 iterations for
both the OSL-MM and OSL-TP algorithms. Values
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of A = 0.50 and 0.27 were computed for OSL-MM
and OSL-TP, respectively. The same bias-STD
tradeoffs are shown for EM-1 (Figs. 7(a)(e)) and EM-2
(Figs. 7(b)(f)). The MAP results, Figs. 7(c)(g) and
(d)(h) again show the TP advantage.

V. CONCLUSION

It is generally difficult to draw firm conclusions
regarding smoothing functionals since there are so
many variables one might optimize. For example,
viewed as an Markov random field, the TP prior
corresponds simply to a slightly larger (quadratic)
neighborhood with different weights relative to a
conventional smoothing MM prior. One could, for
example, attempt to optimize over all possible weights
in some large neighborhood, but such an exhaustive
study would lead to conclusions that are highly
object dependent. Here, we have obtained a perhaps
more robust result: weights corresponding to second
differences in smoothing functionals do have a bias
advantage for a variety of meaningful objects and
reconstruction procedures.
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