• Title/Summary/Keyword: Monte Carlo EM

Search Result 23, Processing Time 0.025 seconds

Analysis of Electromagnetic Wave Scattering from a Sea Surface Using a Monte-Carlo FDTD Technique

  • Choi Dong-Muk;Kim Che-Young;Kim Dong-Il;Jeon Joong-Sung
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.2
    • /
    • pp.87-91
    • /
    • 2005
  • This paper presents a Monte-Carlo FDTD technique to determine the scattered field from a perfectly conducting surface like a sea surface, from which the useful information on the incoherent pattern tendency could be observed. A one-dimensional sea surface used to analysis scattering was generated using the Pierson-Moskowitz model. In order to verify the numerical results by this technique, these results are compared with those of the small perturbation method, which show a good match between them. To investigate the incoherent pattern tendency involved, the dependence of the back scattering coefficients on the different wind speed(U) is discussed for the back scattering case.

On the Bayesian Statistical Inference (베이지안 통계 추론)

  • Lee, Ho-Suk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.263-266
    • /
    • 2007
  • This paper discusses the Bayesian statistical inference. This paper discusses the Bayesian inference, MCMC (Markov Chain Monte Carlo) integration, MCMC method, Metropolis-Hastings algorithm, Gibbs sampling, Maximum likelihood estimation, Expectation Maximization algorithm, missing data processing, and BMA (Bayesian Model Averaging). The Bayesian statistical inference is used to process a large amount of data in the areas of biology, medicine, bioengineering, science and engineering, and general data analysis and processing, and provides the important method to draw the optimal inference result. Lastly, this paper discusses the method of principal component analysis. The PCA method is also used for data analysis and inference.

  • PDF

On EM Algorithm For Discrete Classification With Bahadur Model: Unknown Prior Case

  • Kim, Hea-Jung;Jung, Hun-Jo
    • Journal of the Korean Statistical Society
    • /
    • v.23 no.1
    • /
    • pp.63-78
    • /
    • 1994
  • For discrimination with binary variables, reformulated full and first order Bahadur model with incomplete observations are presented. This allows prior probabilities associated with multiple population to be estimated for the sample-based classification rule. The EM algorithm is adopted to provided the maximum likelihood estimates of the parameters of interest. Some experiences with the models are evaluated and discussed.

  • PDF

BAYESIAN AND CLASSICAL INFERENCE FOR TOPP-LEONE INVERSE WEIBULL DISTRIBUTION BASED ON TYPE-II CENSORED DATA

  • ZAHRA SHOKOOH GHAZANI
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.4
    • /
    • pp.819-829
    • /
    • 2024
  • This paper delves into an examination of both non-Bayesian and Bayesian estimation techniques for determining the Topp-leone inverse Weibull distribution parameters based on progressive Type-II censoring. The first approach employs expectation maximization (EM) algorithms to derive maximum likelihood estimates for these variables. Subsequently, Bayesian estimators are obtained by utilizing symmetric and asymmetric loss functions such as Squared error and Linex loss functions. The Markov chain Monte Carlo method is invoked to obtain these Bayesian estimates, solidifying their reliability in this framework.

Maximum-likelihood Estimation of Radar Cross Section of a Swerling III Target (Swerling III 표적 RCS의 최대공산추정)

  • Jung, Young-Hun;Hong, Sun-Mog
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.87-93
    • /
    • 2017
  • A maximum likelihood (ML) approach is presented for estimating the mean of radar cross section (RCS) of a Swerling III target and its numerical solution methods are discussed. The solution methods are based on an approximate expression for implementing the expectation maximization (EM) algorithm. The methods are evaluated and compared through Monte Carlo simulations in terms of estimation accuracy and computational efficiency to obtain a most efficient method for both Swerling I and Swerling III targets. The methods are also compared with a previously reported method based on heuristics.

Metropolis-Hastings Expectation Maximization Algorithm for Incomplete Data (불완전 자료에 대한 Metropolis-Hastings Expectation Maximization 알고리즘 연구)

  • Cheon, Soo-Young;Lee, Hee-Chan
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.1
    • /
    • pp.183-196
    • /
    • 2012
  • The inference for incomplete data such as missing data, truncated distribution and censored data is a phenomenon that occurs frequently in statistics. To solve this problem, Expectation Maximization(EM), Monte Carlo Expectation Maximization(MCEM) and Stochastic Expectation Maximization(SEM) algorithm have been used for a long time; however, they generally assume known distributions. In this paper, we propose the Metropolis-Hastings Expectation Maximization(MHEM) algorithm for unknown distributions. The performance of our proposed algorithm has been investigated on simulated and real dataset, KOSPI 200.

Semiparametric Regression Splines in Matched Case-Control Studies

  • Kim, In-Young;Carroll, Raymond J.;Cohen, Noah
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.167-170
    • /
    • 2003
  • We develop semiparametric methods for matched case-control studies using regression splines. Three methods are developed: an approximate crossvalidation scheme to estimate the smoothing parameter inherent in regression splines, as well as Monte Carlo Expectation Maximization (MCEM) and Bayesian methods to fit the regression spline model. We compare the approximate cross-validation approach, MCEM and Bayesian approaches using simulation, showing that they appear approximately equally efficient, with the approximate cross-validation method being computationally the most convenient. An example from equine epidemiology that motivated the work is used to demonstrate our approaches.

  • PDF

Quantitative Analysis of Bayesian SPECT Reconstruction : Effects of Using Higher-Order Gibbs Priors

  • S. J. Lee
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.133-142
    • /
    • 1998
  • In Bayesian SPECT reconstruction, the incorporation of elaborate forms of priors can lead to improved quantitative performance in various statistical terms, such as bias and variance. In particular, the use of higher-order smoothing priors, such as the thin-plate prior, is known to exhibit improved bias behavior compared to the conventional smoothing priors such as the membrane prior. However, the bias advantage of the higher-order priors is effective only when the hyperparameters involved in the reconstruction algorithm are properly chosen. In this work, we further investigate the quantitative performance of the two representative smoothing priors-the thin plate and the membrane-by observing the behavior of the associated hyperparameters of the prior distributions. In our experiments we use Monte Carlo noise trials to calculate bias and variance of reconstruction estimates, and compare the performance of ML-EM estimates to that of regularized EM using both membrane and thin-plate priors, and also to that of filtered backprojection, where the membrane and thin plate models become simple apodizing filters of specified form. We finally show that the use of higher-order models yields excellent "robustness" in quantitative performance by demonstrating that the thin plate leads to very low bias error over a large range of hyperparameters, while keeping a reasonable variance. variance.

  • PDF

An estimation method for non-response model using Monte-Carlo expectation-maximization algorithm (Monte-Carlo expectation-maximaization 방법을 이용한 무응답 모형 추정방법)

  • Choi, Boseung;You, Hyeon Sang;Yoon, Yong Hwa
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.587-598
    • /
    • 2016
  • In predicting an outcome of election using a variety of methods ahead of the election, non-response is one of the major issues. Therefore, to address the non-response issue, a variety of methods of non-response imputation may be employed, but the result of forecasting tend to vary according to methods. In this study, in order to improve electoral forecasts, we studied a model based method of non-response imputation attempting to apply the Monte Carlo Expectation Maximization (MCEM) algorithm, introduced by Wei and Tanner (1990). The MCEM algorithm using maximum likelihood estimates (MLEs) is applied to solve the boundary solution problem under the non-ignorable non-response mechanism. We performed the simulation studies to compare estimation performance among MCEM, maximum likelihood estimation, and Bayesian estimation method. The results of simulation studies showed that MCEM method can be a reasonable candidate for non-response model estimation. We also applied MCEM method to the Korean presidential election exit poll data of 2012 and investigated prediction performance using modified within precinct error (MWPE) criterion (Bautista et al., 2007).

On statistical Computing via EM Algorithm in Logistic Linear Models Involving Non-ignorable Missing data

  • Jun, Yu-Na;Qian, Guoqi;Park, Jeong-Soo
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.11a
    • /
    • pp.181-186
    • /
    • 2005
  • Many data sets obtained from surveys or medical trials often include missing observations. When these data sets are analyzed, it is general to use only complete cases. However, it is possible to have big biases or involve inefficiency. In this paper, we consider a method for estimating parameters in logistic linear models involving non-ignorable missing data mechanism. A binomial response and normal exploratory model for the missing data are used. We fit the model using the EM algorithm. The E-step is derived by Metropolis-hastings algorithm to generate a sample for missing data and Monte-carlo technique, and the M-step is by Newton-Raphson to maximize likelihood function. Asymptotic variances of the MLE's are derived and the standard error and estimates of parameters are compared.

  • PDF