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Abstract . In Bayesian SPECT reconstruction, the incorporation of elaborate forms of priors can lead to improved quantitative perform-
ance in various statistical terms, such as bias and variance. In particular, the use of higher-order smoothing priors, such as the thin-plate
prior, is known to exhibit improved bias behavior compared to the conventional smoothing priors such as the membrane prior. However,
the bias advantage of the higher-order priors is effective only when the hyperparameters involved in the reconstruction algorithm are
properly chosen. In this work, we further investigate the quantitative performance of the two representative smoothing priors - the thin
plate and the membrane - by observing the behavior of the associated hyperparameters of the prior distributions. In our experiments we
use Monte Carlo noise trials to calculate bias and variance of reconstruction estimates, and compare the performance of ML-EM esti-
mates to that of regularized EM using both membrane and thin-plate priors, and also to that of filtered backprojection, where the mem-
brane and thin plate models become simple apodizing filters of specified form. We finally show that the use of higher-order models yields
excellent “robustness” in quantitative performance by demonstrating that the thin plate leads to very low bias error over a large range
of hyperparameters, while keeping a reasonable variance.
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INTRODUCTION

al views acquired at many different angles about the pa-

. tient. Since SPECT systems, in practice, inherently involve
In single-photon emission computed tomography (SPECT), . y' P v ]
i i . . . noise and several physical factors that degrade the projec-
the radiopharmaceutical, designed to show physioclogical ) . i i )
. ) . L. : tion data, the qualty of image reconstructions is poor when
function of a particular organ in the body, is injected into

. ) . the measurements are assumed to be made with infinite ac-
the patient and localizes within one or more organs based

. . . . L . curacy. Over the last decade, a variety of statistical recon-
on its biochemical properties. The objective of SPECT is to Y v

. o . struction methods[ 1-7] have been introduced and have en-
determine the three-dimensional (3-D) distribution of radio- . o [ . i o
. . _ . Lo joyed continuing interest since they can in principle over-
nuclide concentrations within the body using 2-D projection- i ] i
come the above problems associated with the classical deter-

ministic reconstruction methods, such as filtered backprojec-

FAAMAE 0] A), (302-735) A4l AF wop 2% 439-6 iAol tion (FBP). The well-known ML-EM (maximum-likelihood
3 AALaly . L S
’I?ef_ (X(;zlxg)%j)—t}ﬂl Fax. (042)520-5663 expectation-maximization) approach for reconstruction is at-

E-mail : sjlee@woonam.paichai.ac.kr tractive in that it can naturally express accurate system
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models of physical effects, and can accurately model the
statistical character of the data. However, it is known to
be unstable for the noise levels and numbers of measure-
ments that characterize SPECT. In contrast, regularized EM
in the context of a Bayesian maximum a posteriori (MAP)
framework overcomes this instability by incorporating prior
information while retaining the above advantages of ML-
EM approaches. Priors in a Bayesian approach are probabi-
listic descriptions of the spatial character of the underlying
emission object. Since it 1s difficult to infer global proper-
ties of the underlying source, most common approaches in-
volve assumptions on the local spatial characteristics of the
underlying source and model the prior probability as Gibbs
distributions which are equivalent to Markov random fields
(MRFs). In these approaches, neighboring pixels in the un-
derlying source are assumed to have similar intensities.

In recent years, many Gibbs priors have been proposed in
the literature; some of these implicitly model the underlying
radionuclide density as globally smooth[ 6,81, and others ex-
tend the smoothness model by allowing for spatial discon-
tinuities[ 2,4,7,9,10]. Discontinuity preservation is associated
with a smoothing penalty that is a nonquadratic function[7]
of nearby pixel differences, whereas conventional (e.g. mem-
brane) smoothing priors use quadratic penalties. Although
these priors can exhibit good performance, their applications
to the clinic is hindered mainly by the difficulty in the
choice of hyperparameters that control the degree of regu-
larity in the reconstruction. Several methods to estimate
values of hyperparameters have been proposed[11-13].
However, most of the methods are computationally expen-
sive and far from routine applications. Therefore, a recon-
struction algorithm that involves hyperparameters may be
more practical if it can exhibit a good performance even in
the case of imperfect selection of hyperparameters. This is
related to the “robustness” of a reconstruction algorithm
with respect to hyperparameters involved in the algorithm.

In our previous work[14], we showed that a new quad-
ratic smoothing prior for SPECT reconstruction, the thin
plate (TP), offers good performance compared to the mem-
brane (MM) prior in that, unlike the priors with first deriv-
atives, the TP prior recovers graded (ramplike or soft-
edged) source characteristic of realistic distributions more
effectively without incurring large bias errors due to the
smoothing of edge regions. In this work, we further investi-
gate the advantages of TP priors in terms of various

quantitations. We evaluate and compare, by using Monte
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Carlo noise trials, the quantitative performance of the quad-
ratic smoothing priors - the membrane and the thin plate.
The behavior of the associated hyperparameters of the prior
distributions is then observed and characterized in a
systematic way. We finally show that the use of sec
ond-derivatives yields excellent robustness in both bias and
variance by demonstrating that TP leads to very low bias
error over a large range of smoothing parameter, while

keeping a reasonable variance.

MAXIMUM A POSTERIORI APPROACHES

The MAP approach in the context of a Bayesian frame-
work is to estimate the underlying source field £ by maxi-

mizing the posterior probability, given as

Pr(G=g| F=f)Pr(F=T)
Pr(G=g)

Pr(F=f| G=g)= (1

where f and g are 2-D vector fields for the source inten-
sities and projection data, respectively, and F and G are
the associated random fields. Given the posterior distribu-
tion in (1), maximizing the posterior distribution is equiva-
lent to minimizing -log of the posterior probability and the

MAP estimation reduces to

f=arg min [-log Pr(G=g | F=f)-log Pr(F=f)],

where the two terms on the right side are the likelihood
and the prior, respectively.

Since the number of detected counts in SPECT is inde-
pendently Poisson distributed, we model the likelihood as :

—g -
g4 t eXp(—gto)

Pr(G=glF=1F) =1 ,
&

to

(2)

H,.f,

oii)i;e 10 (2) g, 1s the number of detected

where g:ﬂzlzj}
counts in the detector bin indexed by ¢ at angle 4, glhe is
the expected number of counts for a particular source f,
and H,.. is the probability that a photon emitted from
source location (7,7) hits detector bin t at angle 6. The
major physical factors for SPECT, attenuation, scatter, and
detector response, can be adequately modeled as linear ef-

fects and summarized by the probability matrix H

tonis "

The likelihood energy then becomes

E(f) = -log Pr(G = gl F =)

:g[—gwlog(g:o)] + %g:e’
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where the term log (g,,!) was dropped since it does not in-
volve f.

To 1incorporate the MM and TP priors in a MAP ap-
proach, we model the prior probability as a Gibbs distribu-

tion given as
Pr(F = £) = & exp[-AE(F)),

where f is the 2-D source distribution comprising pixel
components f;, E the associated Gibbs prior energy func-
tion, Z a normalization of no concern here, and A the posi-
tive hyperparameter that weights the prior relative to the
likelihood term. The function E{f) is the weighted sum of
energies of individual “cliques” which are defined by
adjacent pixels in the neighborhood. The energy FE(f) for
MM is given as

By (=3[ G0+ £, |

for the four-nearest neighborhood system, and

.. .. 1 .. 1 ..
EMM<f>:§[f§<z,;>+fj<z,;>+7-7—fj<z,1)+—ﬁ~fj<z,j>]

(3)

for the eight-nearest neighborhood system with discretiza-

tions of first partial derivatives given by

Kod) = fonfop KGD = fs — s

i ivd

Ioh) = fisn e TaD = Fsn —

i i i,5°

For the thin plate, the energy is

By () =S| S+ £ i)+ £y (i) @

Here, f,.(7,7) and fu(i,j) denote the discrete second partial
derivatives of the source distribution in the vertical and
horizontal directions, respectively, and f,.(7,7) 1s the second
partial cross derivative. Our choices for discretization of the
derivatives are:

Sl oD =1 =28 T

foo ) = frp 2 s

fhv(l-'j) = fi+1,j+1Afi+1»j7fiyj+l+fiyj'

In this work, we use (3) and (4) for MM and TP,
respectively.

To find a minimum of the overall energy function that

consists of the likellhood and the prior, we utilize the In-
complete/complete data formulation of generalized EM-MAP
(GEM-MAP) approach[2]. In this case the maximization
step of the GEM-MAP algorithm results in the minimiza-

tion of

E(F| £)=-Q(f | F)+AELF),

where #* is the current (kth) estimate,

h’za-ij}fj
gtﬁfﬁ_bg(}(ﬁ) - Hw,z‘jfij]’

mna t6:mm’ mn

a1 M=-3

and E(f} is the prior energy function given by either
Eyy(f) in (3) orE (f) in (4). To minimize the above
M-step objective function, we use the method of Iterated
Conditional Modes (ICM)[15]). ICM minimizes the energy
function by a coordinate-wise descent procedure performed
by minimizing the energy function with respect to f; while
keeping all other source intensities fixed. After a full sweep
of the lattice, the procedure is repeated until convergence
criteria are met.

To find the solution that minimizes the M-step objective

function, we setig% = 0 and solve for f, The ICM

update equations for MM and TP are given by

~(ZH,,,;~24X,) +\/(§1@0,“—2/1X3)2+9,1X2X1

BHL_

fu= 41X, ’
where ~
£
t6,i57 iJ
X = 2, n
k
SH, g
X =4+2/2

T R+1 T R+1 Tk Tk
stfz'-l,j+fi,j-1+fi.j+1+fi+1.j

JZ— R+l T k+l Tk Tk
+T(fi71,j-1+fif1.j+l+fi+1‘j-l+fi+1,.i+l)
for MM, and

X, = 20,

2
Tkt TR+l TR Tk
X3:8(fiv1-j+fi,j~1+fi,j+1+fi+1,j)
TR+l Tkt Tk Tk
"Z(ff—1,j-1+fi.1u‘+1+fi+1.j-1+fi+1,j+1)

G R+1 Tkl Tk Tk
*(fi»z.j+fi.j~2+fi,f+2+fi+2.j)
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(a)

(b)

Fig. 1. Phantoms used in the simulations. (a) Phantom A. (b)
Phantom B. (c) Phantom C derived from primate autoradiograph.
Phantoms A and B comprise blobby hot and cold regions,
respectively, which represent important regions in realistic phan-
tom C.

for TP. Note that an ICM uses a raster-scan update in
which each pixel is replaced as soon as it is updated.

Finally, we tried simple FBP reconstructions, where the
incorporation of smoothing spline models is in the form of
a simple linear apodization. We implemented the apodization
in the Fourier domain of the projection data[14], where the
angle-independent apodizing filters that multiply the ramp
filter take the forms:

Ay l) = 1—1~ and A, (0) = —

+Aw? 1+ Ao*
for membrane and thin plate, respectively. Note that A now
assumes the role as a cutoff frequency instead of a weight-

Ing term mn an energy function.
EXPERIMENTS AND RESULTS

To test the quantitative performance of reconstruction
algorithms, we used the 2-D phantoms shown in Fig. 1.
The mathematical phantoms A and B comprise blobby hot
and cold regions with nonzero constant background. Both
hot and cold regions have 25 pixel diameter, and their con-
trast of peaks relative to the background 1s 100%. Figure 1
(b) shows a 128x128 realistic[11] phantom C obtained
from primate autoradiograph[16] with the benzodiazepine
neuroreceptor agent lomazenil ('®[). Autoradiographs pro-
vide “ground truth” functional patterns of radionuclide con-
centration and can be useful for designing priors in
Bayesian reconstruction[16]. Further details on autoradio-

graphy can be found in[16,17]. In our experiments, we

o] 3-8 3] 7] 1A 19, H2E, 1998

used phantoms A and B for regional quantitation, and
phantom C for the overall quality of image reconstruction,
For reconstruction algorithms, we considered ML-EM,
MAP-MM, MAP-TP, FBP-MM, and FBP-TP. For projec-
tion data from 64x64 and 128 x128 phantoms, we used 65
projection angles over 360° with 96 detector bins and 129
projection angles over 360° with 192 detector bins,
respectively. In this work, we considered attenuation effects
only; each projection ray was attenuated by the constant

!, For simulations and correc-

attenuation factor of 0.15cm~
tions of the attenuation effects, we used a method proposed
by Liang et al[18] that utilizes the Siddon’s method[19]
to recursively compute attenuation factors along each pro-
jection ray starting at the pixel closest to the detector. At
each stage of our iterative reconstructions, compensation
consisted of simply an attenuated forward projection. The
noise levels used in our experiments were 500K for phan-
toms A and C, and 464K for phantom B.

Figure 2 shows anecdotal reconstructions for phantom C.
Figures 2(a) and (f) show the typical behavior of ML-EM;
the results for fewer iterations are smoother than those for
more iterations but incur relatively larger bias errors. Fig-
ures 2(b)(c) and (g)(h) show the MAP results for differ-
ent values of A. Note that, for MM, the bias in both high
and low-activity regions increases considerably as A increas-
es. However, it Is important to point out that the degree of
oversmoothness for MAP-TP i1s much less than that for
MAP-MM. This implies that TP is less sensitive to varia-
tions of the smoothing parameter than MM. This is also
true for the FBP reconstructions in Figs. 2(d)(e) and (i)
(j). Close inspection reveals that the MAP-TP reconstruc-
tion captures subtle aspects of phantom C better than other
algorithms used In the simulation.

To characterize, in an ensemble sense, the effects of the
hyperparameter A for the MM and TP priors and the num-
ber of iterations for ML-EM, we first generated 50 Monte
Carlo noise trials by adding independent realizations of Pois-
son noise to the noiseless projection data. For each set of
noisy projection data, reconstructions using the MM and TP
priors were performed for seven values of A: A, = 0.5X%2,
i=0,1,2,3,4,5,6. Thus the total number of reconstructions
for each algorithm was 350. Here, the range of A is realis-
tic in that the A that yields a minimum of root-mean
squared error (RMSE) is near the center of the range.
Since the ICM algorithm is iterative, we needed to choose a

sufficient number of iterations after which the change in
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H (2)

(d)

0]

Fig. 2. Anecdotal reconstructions for phantom C. (a) ML-EM, 20 iterations (b) MAP-MM A1=2 (c) MAP-TP, i=2 (d) FBP-MM, A=2
(e} FBP-TP, A=2 (f) ML-EM, 80 iterations (g) MAP-MM, A=16 (h) MAP-TP, 1=16 (i) FBP-MM, 1=16 (j) FBP-TP, 1=16

Suerstions U derattons 20 werations ) terations 80 terations

16U iterations 320 iterations

3 ueratons $0eratons

P sterations 20 sterations

Fig. 3. Pointwise bias and STD images for phantom A. (a) Pointwise bias images. (b} Pointwise STD images

reconstruction was negligible. The number of iterations used
in the experiments was 200 for both MM and TP recon-
structions. (The total computation time needed to recon-
struct a 64 x64 image with 200 iterations was approximate-
ly 20 seconds on a SUN UltraSparc 1 170 workstation.) For
the ML-EM algorithm, the estimates from seven different it-
eration numbers, n,=5x2, {=0,1,2,3,4,5,6, were achieved
for subsequent statistical analysis. (This 1s qualitatively
equivalent 1o defining A, for TP and MM.) For FBP with
MM and TP filters, we again used seven values of A: A,=

05x2, 1=0,1,2,3,4,5,. It is interesting to note that the
range of A for FBP 1s the same as that for MAP, and, as
shown in the simulation results, this yields comparable
results in regional quantitation performance to other algo-
rithms used In the experiments.

To evaluate the reconstructions quantitatively, we comput-
ed bias and standard deviation (STD) images. A bias

K~ ~
image, b, is defined as bij:%{gl( FE—f), where F% is
h=

the kth reconstruction of phantom f at location (3,7) and

J. of KOSOMBE : Vol. 19, No. 2, 1998
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Fig. 4. Pointwise bias and STD images for phantom B. (a) Pointwise bias images. (b) Pointwise STD images
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Fig. 5. Pointwise bias images for phantom C. (a) MAP-MM

{h {13 () (kY

m

=05 (b) MAP-MM 2A=4 (c) MAP-MM, 1=32 (d} MAP-TP, A=05 (e)

, A
MAP-TP, 1=4 (f) MAP-TP, A=32 (g) FBP-MM, 1=05 (h) FBP-MM, A=4 (i) FBP-MM, A=32 (j) FBP-TP, 1=05 (k) FBP-TP, 1=4

() FBP-TP, A=32

the summation is over K=50 independent noise trials. To
display the bipolar bias image, an Intermediate grey scale

value of 128 out of 256 levels was used as zero bias. A
standard deviation image, S, 1s defined as

K ~ — _ o~
LZ(f’.a.\f,.)z where f.. is the mean of £
K_lkZI g tJ tJ i

— K ~
over the noise trials defined as f ij:% kZl f fj.

Figures 3 and 4 show pointwise bias and STD images for
phantoms A and B, respectively, where the same grey scale
normalization 1s used for all to allow fair comparisons. The

first row shows the usual bias/variance tradeoff inherent in

ol yetsi# A998, Al2E, 1998

ML-EM. Fewer iterations lead to lower variance but larger
bias, and the opposite i1s true for the larger number of ite-
rations. Note that the bias is negative in high-count regions
(Fig. 3), and positive in low-count regions (Fig. 4). The
second and third rows show the bias/STD images for
MAP-MM and MAP-TP, respectively. Note that bias for
MAP-TP is considerably less sensitive to the variations of
A than that for MAP-MM at little change in variance. The
FBP results show a similar negative and positive biases in
hot and cold regions, respectively, but the effect is amelio-
rated by the use of the TP filter. FBP algorithms “spread”
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Total Squared Error

Parameter Index

(a)

Fig. 6. Total squared error t% The abscissa indexes either
A. (b) Total squared error for phantom B.

-4 -
% Bias
(@)

Total Squared Error
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ML-EM -6—
MAP-MM -+~
MAP-TP -&--
. FBP-MM.. % . 4

Parameter Index

(b)

A for MAP and FBP or #, for ML-EM. (a) Total sauared error for phantom

ML-EM -o—

Fig. 7. The effects of several different values of smoothing parameter A in MAP-MM, MAP-TP, FBP-MM, and FBP-TP. (a) Tradeoff
between bias and STD for phantom A. (b) Tradeoff between bias and STD for phantom B.

variance across the image and, for these phantoms, the
FBP-TP results actually achieve lower variance relative to
MM. Figure 5 shows pointwise bias images for phantom C.
As In the cases for phantoms A and B, bias for MAP-TP
and FBP-TP Is considerably less sensitive to the variations
of A than that for MAP-MM and FBP-MM, respectively.
The results for the STD images are not reported here since
their behavior is similar to the results from phantoms A
and B. It is interesting to note that, for phantom C, bias
for MAP-MM and MAP-TP is less sensitive to the varia-
tions of A than that for FBP-MM and FBP-TP, respectively.

Figure 6 summarizes results in Figs. 3 and 4 in terms of
total squared error f% computed as tZZZ(b,.,Z—Fs,.,Z) . In
Fig. 6 the abscissa indexes either the seven different values
of smoothing parameter (A,=0.5x2, 7=0,1,2,--,6) or the
number of iterations in ML-EM (#n,=5x%x2, /=0,1,2,---,6).
Note that both MAP-TP and FBP-TP exhibit low total
squared error over the range of smoothing parameter, and
the minimum of ¢* at A;=16 for MAP-TP is indeed small-
er than that for other algorithms used in the simulation.

To assess regional quantitation performance, we also com-

pared regional bias and variance for each given A. This

J. of KOSOMBE : Vol. 19, No. 2, 1998
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measure is simply the bias and variance of a random varia-

L ! fl.kj, which s equal to the average count
iJER

ble Z,

level in a region R comprised of m pixels. The appropriate

regional definitions are

B - Lsizz
Rl @A Y (5)
for regional bias, and
STD. = /Lﬁ( K7y (6)
R K—-14 ZR ZR

for regional standard deviation, where

_ 1 > _ 1 &
7 = WZz'J;Rfij and Z,= Kkg'lZ;

The percent bias and the percent STD are then the quanti-

B TD
ties ——EX 100 and R x 100, respectively. To test regional

Z Zr

quantitation performance, we selected a circle, which covers
the blob region, as a region of interest (ROI) for both
phantoms A and B, and evaluated regional bias and STD
within the region using (5) and (6), respectively. Figures 7
(a) and (b) show %bias versus %STD curves for phan-
toms A and B, respectively. Note that the use of sec-
ond-derivatives in MAP-TP and FBP-TP both yield excel-
lent “robustness” in both bias and variance in that the TP
leads to very low bias error over a large range of smooth-
ing parameter, while keeping a reasonable variance. Other
algorithms can exhibit smaller variance, but this is possible

only at the cost of huge bias.
DISCUSSION AND CONCLUSION

We have considered the thin-plate prior which is a simple
modification of the conventional membrane prior to one less
The

results from the quantitative performance test show that,

sensitive to variations In first spatial derivatives.
for comparable performance to MAP-MM in wvariance,
MAP-TP leads to reduced bias for most of the regions
studied here. In addition, MAP-TP reveals considerably less
sensitivity in bias to the variations of hyperparameter than
MAP-MM. This same advantage is achieved when the thin
plate and membrane regularizers are Implemented as an
apodizing filter in an FBP algorithm. However, FBP recon-

structions involve patterning artifact and are more sensitive

olzate] ) : A197, A2, 1998

W

A

to hyperparameters than MAP for the realistic phantom
used in our experiments. For ML-EM with several different
iterations, the tradeoff between bias and variance 1s less fa-
vorable than other algorithms considered here.

We note that, although quadratic smoothing priors may
not perform as well in edge regions as nonquadratic priors,
the simpler quadratic priors present an easier hyperpara-
meter estimation problem[11,20]. Therefore, the use of TP
prior would alleviate the problem of hyperparameter estima-
tion by allowing a large range of hyperparameter as well
as presenting an easier way of hyperparameter estimation.

A clinical application of the TP prior is currently under
investigation; our preliminary results from practical studies

show similar advantages of the TP prior as reported in this

paper.
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