• 제목/요약/키워드: Monte Carlo (MC) simulation

검색결과 143건 처리시간 0.024초

Monte Carlo Algorithm-Based Dosimetric Comparison between Commissioning Beam Data across Two Elekta Linear Accelerators with AgilityTM MLC System

  • Geum Bong Yu;Chang Heon Choi;Jung-in Kim;Jin Dong Cho;Euntaek Yoon;Hyung Jin Choun;Jihye Choi;Soyeon Kim;Yongsik Kim;Do Hoon Oh;Hwajung Lee;Lee Yoo;Minsoo Chun
    • 한국의학물리학회지:의학물리
    • /
    • 제33권4호
    • /
    • pp.150-157
    • /
    • 2022
  • Purpose: Elekta synergy® was commissioned in the Seoul National University Veterinary Medical Teaching Hospital. Recently, Chung-Ang University Gwang Myeong Hospital commissioned Elekta Versa HDTM. The beam characteristics of both machines are similar because of the same AgilityTM MLC Model. We compared measured beam data calculated using the Elekta treatment planning system, Monaco®, for each institute. Methods: Beam of the commissioning Elekta linear accelerator were measured in two independent institutes. After installing the beam model based on the measured beam data into the Monaco®, Monte Carlo (MC) simulation data were generated, mimicking the beam data in a virtual water phantom. Measured beam data were compared with the calculated data, and their similarity was quantitatively evaluated by the gamma analysis. Results: We compared the percent depth dose (PDD) and off-axis profiles of 6 MV photon and 6 MeV electron beams with MC calculation. With a 3%/3 mm gamma criterion, the photon PDD and profiles showed 100% gamma passing rates except for one inplane profile at 10 cm depth from VMTH. Gamma analysis of the measured photon beam off-axis profiles between the two institutes showed 100% agreement. The electron beams also indicated 100% agreement in PDD distributions. However, the gamma passing rates of the off-axis profiles were 91%-100% with a 3%/3 mm gamma criterion. Conclusions: The beam and their comparison with MC calculation for each institute showed good performance. Although the measuring tools were orthogonal, no significant difference was found.

부식결함을 가진 배관의 파손확률 예측을 위한 단순화된 방법 (A Simplified Method for Predicting Failure Probability of Pipelines with Corrosion Defects)

  • 이진한;김영섭;김래현
    • 한국가스학회지
    • /
    • 제14권4호
    • /
    • pp.31-36
    • /
    • 2010
  • 본 논문은 부식 배관의 파손 가능성에 대해 확률론적 분석방법을 설명하고, 이를 단순화하여 계산할 수 있는 방법을 제안하였다. 부식 배관의 파손은 운전압력이 부식 배관의 잔존강도를 초과할 때 발생하는데 이를 한계상태 함수로 설정하여 분석하면 부식이 진행됨에 따른 누출확률에 대한 불확실성을 예측할 수 있다. 이 한계상태 함수는 해석해가 존재하지 않으므로 전통적으로 불확실성을 예측하기 위해 Monete-Carlo Simulation (MCS)을 사용한다. 본 연구에서는 한계상태 함수의 해가 하나만 존재한다는 점에 착안하여 그 해를 수치적으로 찾는 방법을 제안하였다. 이 방법은 MCS를 이용한 결과와 비교할 때 오차가 적으면서도 매우 빠르게 계산할 수 있어 효율적인 방법이라 판단된다.

Radiation attenuation and elemental composition of locally available ceramic tiles as potential radiation shielding materials for diagnostic X-ray rooms

  • Mohd Aizuddin Zakaria;Mohammad Khairul Azhar Abdul Razab;Mohd Zulfadli Adenan;Muhammad Zabidi Ahmad;Suffian Mohamad Tajudin;Damilola Oluwafemi Samson;Mohd Zahri Abdul Aziz
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.301-308
    • /
    • 2024
  • Ceramic materials are being explored as alternatives to toxic lead sheets for radiation shielding due to their favorable properties like durability, thermal stability, and aesthetic appeal. However, crafting effective ceramics for radiation shielding entails complex processes, raising production costs. To investigate local viability, this study evaluated Malaysian ceramic tiles for shielding in diagnostic X-ray rooms. Different ceramics in terms of density and thickness were selected from local manufacturers. Energy Dispersive X-ray Fluorescence (EDXRF) and X-ray Fluorescence (XRF) characterized ceramic compositions, while Monte Carlo Particle and Heavy Ion Transport code System (MC PHITS) simulations determined Linear Attenuation Coefficient (LAC), Half-value Layer (HVL), Mass Attenuation Coefficient (MAC), and Mean Free Path (MFP) within the 40-150 kV energy range. Comparative analysis between MC PHITS simulations and real setups was conducted. The C3-S9 ceramic sample, known for homogeneous full-color structure, showcased superior shielding attributes, attributed to its high density and iron content. Notably, energy levels considerably impacted radiation penetration. Overall, C3-S9 demonstrated strong shielding performance, underlining Malaysia's potential ceramic tile resources for X-ray room radiation shielding.

Atomistic modeling for 3D dynamci simulation of ion implantation into crystalline silicon

  • 손명식;강정원;변기량;황호정
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.421-424
    • /
    • 1998
  • In this paper are presented a newly proposed 3D monte carlo (MC) damage model for the dynamic simulation in order to more accurately and consistently predict the implant-induced point defect distributions of the various ions in crystalline silicon. This model was applied to phosphorus implants for the ULSI CMOS technology developement. In additon, a newly applied 3D-trajectory split method has been implemented into our model to reduce the statistical fluctuations of the implanted impurity and the defect profiles in the relatively large implanted area as compared to 1D or 2D simulations. Also, an empirical electronic energy loss model is proposed for phosphorus and silicon implants. The 3D formations of the amorphous region and the ultra-shallow junction around the implanted region could be predicted by using our model, TRICSI(Transport ions into crystal-silicon).

  • PDF

Application of Molecular Simulation Techniques to Estimation of Gas Permeability in Zeolite Membranes

  • Takaba, Hiromitsu;Yamamoto, Atsushi;Nakao, Shin-Ichi
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2004년도 Proceedings of the second conference of aseanian membrane society
    • /
    • pp.33-38
    • /
    • 2004
  • Molecular modeling of gas permeation through zeolite membranes with/without intercrystalline region was carried out. Molecular dynamics (MD) and Monte Carlo (MC) simulations were performed to estimate the diffusion coefficient and adsorption parameters respectively, and our proposed combined method of molecular simulation techniques with a permeation theory (CMP) was used to estimate gas permeability. The calculated permeability of gases (Ar, He, Ne, $N_2$, $0_2$, $CH_4$) at 301 K for the single crystal membrane model was about one order of magnitude larger than the experiential values, although the dependence on the molecular weight of the permeating species agreed with experiments. On the other hand, the estimated permeability using the diffusivity and adsorption parameters of the intercrystalline region model was in good agreement with the experiments. The consistency between experiments and the estimated values means the importance of considering the intercrystalline region and the validity of CMP method to predict the performance of zeolite membranes.

  • PDF

Computing-Inexpensive Matrix Model for Estimating the Threshold Voltage Variation by Workfunction Variation in High-κ/Metal-gate MOSFETs

  • Lee, Gyo Sub;Shin, Changhwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권1호
    • /
    • pp.96-99
    • /
    • 2014
  • In high-${\kappa}$/metal-gate (HK/MG) metal-oxide-semiconductor field-effect transistors (MOSFETs) at 45-nm and below, the metal-gate material consists of a number of grains with different grain orientations. Thus, Monte Carlo (MC) simulation of the threshold voltage ($V_{TH}$) variation caused by the workfunction variation (WFV) using a limited number of samples (i.e., approximately a few hundreds of samples) would be misleading. It is ideal to run the MC simulation using a statistically significant number of samples (>~$10^6$); however, it is expensive in terms of the computing requirement for reasonably estimating the WFV-induced $V_{TH}$ variation in the HK/MG MOSFETs. In this work, a simple matrix model is suggested to implement a computing-inexpensive approach to estimate the WFV-induced $V_{TH}$ variation. The suggested model has been verified by experimental data, and the amount of WFV-induced $V_{TH}$ variation, as well as the $V_{TH}$ lowering is revealed.

Neutronic simulation of the CEFR experiments with the nodal diffusion code system RAST-F

  • Tran, Tuan Quoc;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2635-2649
    • /
    • 2022
  • CEFR is a small core-size sodium-cooled fast reactor (SFR) using high enrichment fuel with stainless-steel reflectors, which brings a significant challenge to the deterministic methodologies due to the strong spectral effect. The neutronic simulation of the start-up experiments conducted at the CEFR have been performed with a deterministic code system RAST-F, which is based on the two-step approach that couples a multi-group cross-section generation Monte-Carlo (MC) code and a multi-group nodal diffusion solver. The RAST-F results were compared against the measurement data. Moreover, the characteristic of neutron spectrum in the fuel rings, and adjacent reflectors was evaluated using different models for generation of accurate nuclear libraries. The numerical solution of RAST-F system was verified against the full core MC solution MCS at all control rods fully inserted and withdrawn states. A good agreement between RAST-F and MCS solutions was observed with less than 120 pcm discrepancies and 1.2% root-mean-square error in terms of keff and power distribution, respectively. Meanwhile, the RAST-F result agreed well with the experimental values within two-sigma of experimental uncertainty. The good agreement of these results indicating that RAST-F can be used to neutronic steady-state simulations for small core-size SFR, which was challenged to deterministic code system.

On-line measurement and simulation of the in-core gamma energy deposition in the McMaster nuclear reactor

  • Alqahtani, Mohammed
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.30-35
    • /
    • 2022
  • In a nuclear reactor, gamma radiation is the dominant energy deposition in non-fuel regions. Heat is generated upon gamma deposition and consequently affects the mechanical and thermal structure of the material. Therefore, the safety of samples should be carefully considered so that their integrity and quality can be retained. To evaluate relevant parameters, an in-core gamma thermometer (GT) was used to measure gamma heating (GH) throughout the operation of the McMaster nuclear reactor (MNR) at four irradiation sites. Additionally, a Monte Carlo reactor physics code (Serpent-2) was utilized to model the MNR with the GT located in the same irradiation sites used in the measurement to verify its predictions against measured GH. This research aids in the development of modeling, calculation, and prediction of the GH utilizing Serpent-2 as well as implementing a new GH measurement at the MNR core. After all uncertainties were quantified for both approaches, comparable GH profiles were observed between the measurements and calculations. In addition, the GH values found in the four sites represent a strong level of radiation based on the distance of the sample from the core. In this study, the maximum and minimum GH values were found at 0.32 ± 0.05 W/g and 0.15 ± 0.02 W/g, respectively, corresponding to 320 Sv/s and 150 Sv/s. These values are crucial to be considered whenever sample is planned to be irradiated inside the MNR core.

FHSS 및 DSSS 방식 소출력 무선기기간 간섭 분석에 관한 연구 (A Study on Interference Analysis between FHSS and DSSS Short Range Radio Devices)

  • 김진영;김은철;양재수;류충상;오성택
    • 한국전자파학회논문지
    • /
    • 제19권2호
    • /
    • pp.271-279
    • /
    • 2008
  • 본 논문에서는 FHSS 방식의 소출력 무선기기와 DSSS 방식의 소출력 무선기기가 동일 주파수 대역에 존재하는 경우 업무간 간섭을 분석하였다. 분석 방법은 몬테 카를로 방법을 이용하여 DSSS 방식의 소출력 무선기기의 불요 방사가 FHSS 방식의 소출력 무선기기에 미치는 영향을 간섭 확률 측면에서 계산하였다. 간섭 시뮬레이션은 DSSS 방식의 소출력 무선기기의 대역폭과 충격 계수에 따른 간섭량을 계산하였고, 전파 모델은 자유 공간으로 가정하였다. 그리고 간섭원과 피간섭원 사이의 거리에 따른 영향을 수신기에서의 BER 측면에서 분석하였다. 간섭 분석 결과, 간섭원의 대역폭보다는 충격 계수가 시스템 양립성에 많은 영향을 주는 것을 확인할 수 있었고, 단일 간섭원과 다중 간섭원이 존재하는 경우 BER 기준을 만족하는 이격 거리를 확인할 수 있었다.

Influence of the Mars atmosphere model on aerodynamics of an entry capsule: Part II

  • Zuppardi, Gennaro
    • Advances in aircraft and spacecraft science
    • /
    • 제7권3호
    • /
    • pp.229-249
    • /
    • 2020
  • This paper is the logical follow-up of four papers by the author on the subject "aerodynamics in Mars atmosphere". The aim of the papers was to evaluate the influence of two Mars atmosphere models (NASA Glenn and GRAM-2001) on aerodynamics of a capsule (Pathfinder) entering the Mars atmosphere and also to verify the feasibility of evaluating experimentally the ambient density and the ambient pressure by means of the methods by McLaughlin and Cassanto respectively, therefore to correct the values provided by the models. The study was carried out computationally by means of: i) a code integrating the equations of dynamics of an entry capsule for the computation of the trajectories, ii) two Direct Simulation Monte Carlo (DSMC) codes for the solution of the 2-D, axial-symmetric and 3-D flow fields around the capsule in the altitude interval 50-100 km. The computations verified that the entry trajectories of Pathfinder from the two models, in terms of the Mach, Reynolds and Knudsen numbers, were very different. The aim of the present paper is to continue this study, considering other aerodynamic problems and then to provide a contribution to a long series of papers on the subject "aerodynamics in Mars atmosphere". More specifically, the present paper evaluated and quantified the effects from the two models of: i) chemical reactions on aerodynamic quantities in the shock layer, ii) surface temperature, therefore of the contribution of the re-emitted molecules, on local (pressure, skin friction, etc.) and on global (drag) quantities, iii) surface recombination reactions (catalyticity) on heat flux. The results verified that the models heavily influence the flow field (as per the shock wave structure) but, apart from the surface recombination reactions, the effects of the different conditions on aerodynamics of the capsule are negligible for both models and confirmed what already found in the previous paper that, because of the higher values of density from the NASA Glenn model, the effects on aerodynamics of a entry capsule are stronger than those computed by the GRAM-2001 model.