Proceedings of the IEEK Conference (대한전자공학회:학술대회논문집)
- 1998.06a
- /
- Pages.421-424
- /
- 1998
Atomistic modeling for 3D dynamci simulation of ion implantation into crystalline silicon
Abstract
In this paper are presented a newly proposed 3D monte carlo (MC) damage model for the dynamic simulation in order to more accurately and consistently predict the implant-induced point defect distributions of the various ions in crystalline silicon. This model was applied to phosphorus implants for the ULSI CMOS technology developement. In additon, a newly applied 3D-trajectory split method has been implemented into our model to reduce the statistical fluctuations of the implanted impurity and the defect profiles in the relatively large implanted area as compared to 1D or 2D simulations. Also, an empirical electronic energy loss model is proposed for phosphorus and silicon implants. The 3D formations of the amorphous region and the ultra-shallow junction around the implanted region could be predicted by using our model, TRICSI(Transport ions into crystal-silicon).
Keywords