• Title/Summary/Keyword: Monolithic 3D IC

Search Result 16, Processing Time 0.029 seconds

Device Coupling Effects of Monolithic 3D Inverters

  • Yu, Yun Seop;Lim, Sung Kyu
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.1
    • /
    • pp.40-44
    • /
    • 2016
  • The device coupling between the stacked top/bottom field-effect transistors (FETs) in two types of monolithic 3D inverter (M3INV) with/without a metal layer in the bottom tier is investigated, and then the regime of the thickness TILD and dielectric constant εr of the inter-layer distance (ILD), the doping concentration Nd (Na), and length Lg of the channel, and the side-wall length LSW where the stacked FETs are coupled are studied. When Nd (Na) < 1016 cm-3 and LSW < 20 nm, the threshold voltage shift of the top FET varies almost constantly by the gate voltage of the bottom FET, but when Nd (Na) > 1016 cm-3 or LSW > 20 nm, the shift decreases and increases, respectively. M3INVs with TILD ≥ 50 nm and εr ≤ 3.9 can neglect the interaction between the stacked FETs, but when TILD or εr do not meet the above conditions, the interaction must be taken into consideration.

Electrical Coupling of Monolithic 3D Inverter Consisting of Junctionless FET (Junctionless FET로 구성된 적층형 3차원 인버터의 전기적 상호작용에 대한 연구)

  • Jang, Ho-Yeong;Kim, Kyung-won;Ahn, Tae-Jun;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.614-615
    • /
    • 2016
  • I studied electrical coupling of monolithic 3D inverter(M3D-INV) consisting of Junctionless FET(JLFET). If the thickness of Inter Layer Dielectric (ILD) between top JLFET and bottom JLFET is less than 50nm, current-voltage characteristic of top JLFET is rapidly changed by the gate voltage of bottom JLFET. Therefore, you have to consider about the electrical interaction according to the thickness between top JLFET and bottom JLFET in M3D-INV.

  • PDF

AC Electrical Coupling of Monolithic 3D Inverter Consisting of Junctionless FET (Junctionless FET로 구성된 적층형 3차원 인버터의 AC 특성에 대한 연구)

  • Kim, Kyung-won;Ahn, Tae-Jun;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.529-530
    • /
    • 2017
  • Electrical coupling of monolithic 3D inverter(M3D-INV) consisting of Junctionless FET(JLFET) was investigated. Depending on the thickness of Inter Layer Dielectirc (ILD) between top and bottom JLFETs, $N_{gate}-N_{gate}$ capacitance and transconductance $g_m$ are changed by the gate voltage of bottom JLFET. Therefore, when using a stacked structure with the ILD below tens nm, AC electrical coupling between two transistors in M3D-INV should be considered.

  • PDF

SPC, MIC를 통해 만들어진 Poly-Ge Film의 Phosphorus 영향에 따른 전기적 특성 분석

  • Jeong, Hyeon-Uk;Im, Myeong-Hun;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.356-356
    • /
    • 2013
  • Monolithic 3D-IC는 현대 집적회로에서 interconnect로 인해 발생되는 여러 문제들을 해결하기 위해 새롭게 제시되고 있는 기술적 개념으로 구현 시 하위 소자 및 interconnet들에 영향을 주지 않는 저온공정이 필수적이다. 특히 germanium (Ge)은 낮은 녹는점 및 높은 캐리어 이동도 덕분에 3D-IC 구현 시 상위 소자의 channel 물질에 적합한 것으로 알려져 있다. 최근 이러한 Ge을 결정화하기 위해 solid phase crystallization (SPC), metal induced crystallization (MIC), laser annealing과 같은 결정화 방법들이 보고되고 있다. 현재까지 SPC 방법에 의해 얻어진 poly-Ge의 도핑농도 및 이동도와 같은 전기적 특성에 대한 분석은 수행된 바 있으나 3D-IC 공정에 적용이 가능한 MIC 기술을 통해 얻어진 poly Ge 필름에 대한 전기적 특성분석은 부족한 상황이다. 본 연구는 SPC 뿐만 아니라 MIC 방법을 통해 ${\alpha}$-Ge를 결정화시키고 얻어진 poly-Ge 필름의 전기적 특성을 XRD 및 hall effect measurement를 통해 분석하였다. 특히 일반적으로 Ge 내에서 p-type dopant로 동작을 하는 defect과 n-type dopant인 phosphorus 관계를 고려하여 여러 온도에서 SPC 및 MIC에 의해 얻어진 phosphorus doped poly-Ge 필름들의 전기적 특성을 분석하였다.

  • PDF

A Ku-Band 5-Bit Phase Shifter Using Compensation Resistors for Reducing the Insertion Loss Variation

  • Chang, Woo-Jin;Lee, Kyung-Ho
    • ETRI Journal
    • /
    • v.25 no.1
    • /
    • pp.19-24
    • /
    • 2003
  • This paper describes the performance of a Ku-band 5-bit monolithic phase shifter with metal semiconductor field effect transistor (MESFET) switches and the implementation of a ceramic packaged phase shifter for phase array antennas. Using compensation resistors reduced the insertion loss variation of the phase shifter. Measurement of the 5-bit phase shifter with a monolithic microwave integrated circuit demonstrated a phase error of less than $7.5{\circ}$ root-mean-square (RMS) and an insertion loss variation of less than 0.9 dB RMS for 13 to 15 GHz. For all 32 states of the developed 5-bit phase shifter, the insertion losses were $8.2{\pm}1.4$dB, the input return losses were higher than 7.7 dB, and the output return losses were higher than 6.8 dB for 13 to 15 GHz. The chip size of the 5- bit monolithic phase shifter with a digital circuit for controlling all five bits was 2.35 mm ${\times}$1.65 mm. The packaged phase shifter demonstrated a phase error of less than $11.3{\circ}$ RMS, measured insertion losses of 12.2 ${\pm}$2.2 dB, and an insertion loss variation of 1.0 dB RMS for 13 to 15 GHz. For all 32 states, the input return losses were higher than 5.0 dB and the output return losses were higher than 6.2 dB for 13 to 15 GHz. The size of the packaged phase shifter was 7.20 mm${\times}$ 6.20 mm.

  • PDF

Design of VCO(Voltage Controlled Oscillator) for mobile communication with a built-in voltage regulator (전압 레귤레이터를 내장한 이동통신용 VCO(Voltage Controlled Oscillator) 설계)

  • Cho, Hyon-mook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.76-84
    • /
    • 1997
  • In this paper, one of the core components of a mobile communication system, VCO(Voltage Controlled Oscillator) IC is designed. The VCO IC was designed, have realized as LC turned oscillator using varicap. LC sinusoidal tuned oscillator generally requires external inductors and thus remainding circuit is implemneted in monolithic IC. The circuit is fabricated using an 15 mask IC process and has a die size of 1150um${\times}$780um. The tests showed that VCO was operated at frequencies in the regions between 880MHz-915MHz in the control voltage range of 1V to 3V at 5V supply voltage and as the power supply was varied from 4.5V to 5.5V, the frequency varied 425KHz/V. The VCO IC has frequency shift of 1.97MHz/T, carrier level of -7dBm and power consumption of 16.7mA. Also it has phase noise of -80dBc/Hz, offset at 50KHz and harmonic response of center frequency is -41dBm. For the future development of the transceiver 1 chip, the previously mentioned external devices need to be incorporated into Si MMIC.

  • PDF

Thick Metal CMOS Technology on High Resistivity Substrate and Its Application to Monolithic L-band CMOS LNAs

  • Kim, Cheon-Soo;Park, Min;Kim, Chung-Hwan;Yu, Hyun-Kyu;Cho, Han-Jin
    • ETRI Journal
    • /
    • v.21 no.4
    • /
    • pp.1-8
    • /
    • 1999
  • Thick metal 0.8${\mu}m$ CMOS technology on high resistivity substrate(RF CMOS technology) is demonstrated for the L-band RF IC applications, and we successfully implemented it to the monolithic 900 MHz and 1.9 GHz CMOS LNAs for the first time. To enhance the performance of the RF circuits, MOSFET layout was optimized for high frequency operation and inductor quality was improved by modifying the technology. The fabricated 1.9 GHz LNA shows a gain of 15.2 dB and a NF of 2.8 dB at DC consumption current of 15mA that is an excellent noise performance compared with the offchip matched 1.9 GHz CMOS LNAs. The 900 MHz LNA shows a high gain of 19 dB and NF of 3.2 dB despite of the performance degradation due to the integrating of a 26 nH inductor for input match. The proposed RF CMOS technology is a compatibel process for analog CMOS ICs, and the monolithic LNAs employing the technology show a good and uniform RF performance in a five inch wafer.

  • PDF

Monolithic 3D-IC 구현을 위한 In-Sn을 이용한 Low Temperature Eutectic Bonding 기술

  • Sim, Jae-U;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.338-338
    • /
    • 2013
  • Monolithic three-dimensional integrated circuits (3D-ICs) 구현 시 bonding 과정에서 발생되는 aluminum (Al) 이나 copper (Cu) 등의 interconnect metal의 확산, 열적 스트레스, 결함의 발생, 도펀트 재분포와 같은 문제들을 피하기 위해서는 저온 공정이 필수적이다. 지금까지는 polymer 기반의 bonding이나 Cu/Cu와 같은 metal 기반의 bonding 등과 같은 저온 bonding 방법이 연구되어 왔다. 그러나 이와 같은 bonding 공정들은 공정 시 void와 같은 문제가 발생하거나 공정을 위한 특수한 장비가 필수적이다. 반면, 두 물질의 합금을 이용해 녹는점을 낮추는 eutectic bonding 공정은 저온에서 공정이 가능할 뿐만 아니라 void의 발생 없이 강한 bonding 강도를 얻을 수 있다. Aluminum-germanium (Al-Ge) 및 aluminum-indium (Al-In) 등의 조합이 eutectic bonding에 이용되어 각각 $424^{\circ}C$$454^{\circ}C$의 저온 공정을 성취하였으나 여전히 $400^{\circ}C$이상의 eutectic 온도로 인해 3D-ICs의 구현 시에는 적용이 불가능하다. 이러한 metal 조합들에 비해 indium (In)과 tin (Sn)은 각각 $156^{\circ}C$$232^{\circ}C$로 굉장히 낮은 녹는점을 가지고 있기 때문에 In-Sn 조합은 약 $120^{\circ}C$ 정도의 상당히 낮은eutectic 온도를 갖는다. 따라서 본 연구팀은 In-Sn 조합을 이용하여 $200^{\circ}C$ 이하에서monolithic 3D-IC 구현 시 사용될 eutectic bonding 공정을 개발하였다. 100 nm SiO2가 증착된 Si wafer 위에 50 nm Ti 및 410 nm In을 증착하고, 다른Si wafer 위에 50 nm Ti 및 500 nm Sn을 증착하였다. Ti는 adhesion 향상 및 diffusion barrier 역할을 위해 증착되었다. In과 Sn의 두께는 binary phase diagram을 통해 In-Sn의 eutectic 온도인 $120^{\circ}C$ 지점의 조성 비율인 48 at% Sn과 52 at% In에 해당되는 410 nm (In) 그리고 500 nm (Sn)로 결정되었다. Bonding은 Tbon-100 장비를 이용하여 $140^{\circ}C$, $170^{\circ}C$ 그리고 $200^{\circ}C$에서 2,000 N의 압력으로 진행되었으며 각각의 샘플들은 scanning electron microscope (SEM)을 통해 확인된 후, 접합 강도 테스트를 진행하였다. 추가로 bonding 층의 In 및 Sn 분포를 확인하기 위하여 Si wafer 위에 Ti/In/Sn/Ti를 차례로 증착시킨 뒤 bonding 조건과 같은 온도에서 열처리하고secondary ion mass spectrometry (SIMS) profile 분석을 시행하였다. 결론적으로 본 연구를 통하여 충분히 높은 접합 강도를 갖는 In-Sn eutectic bonding 공정을 $140^{\circ}C$의 낮은 공정온도에서 성공적으로 개발하였다.

  • PDF

High-Speed Digital/Analog NDR ICs Based on InP RTD/HBT Technology

  • Kim, Cheol-Ho;Jeong, Yong-Sik;Kim, Tae-Ho;Choi, Sun-Kyu;Yang, Kyoung-Hoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.3
    • /
    • pp.154-161
    • /
    • 2006
  • This paper describes the new types of ngative differential resistance (NDR) IC applications which use a monolithic quantum-effect device technology based on the RTD/HBT heterostructure design. As a digital IC, a low-power/high-speed MOBILE (MOnostable-BIstable transition Logic Element)-based D-flip flop IC operating in a non-return-to-zero (NRZ) mode is proposed and developed. The fabricated NRZ MOBILE D-flip flop shows high speed operation up to 34 Gb/s which is the highest speed to our knowledge as a MOBILE NRZ D-flip flop, implemented by the RTD/HBT technology. As an analog IC, a 14.75 GHz RTD/HBT differential-mode voltage-controlled oscillator (VCO) with extremely low power consumption and good phase noise characteristics is designed and fabricated. The VCO shows the low dc power consumption of 0.62 mW and good F.O.M of -185 dBc/Hz. Moreover, a high-speed CML-type multi-functional logic, which operates different logic function such as inverter, NAND, NOR, AND and OR in a circuit, is proposed and designed. The operation of the proposed CML-type multi-functional logic gate is simulated up to 30 Gb/s. These results indicate the potential of the RTD based ICs for high speed digital/analog applications.

Design of pHEMT channel structure for single-pole-double-throw MMIC switches (SPDT 단일고주파집적회로 스위치용 pHEMT 채널구조 설계)

  • Mun Jae Kyoung;Lim Jong Won;Jang Woo Jin;Ji, Hong Gu;Ahn Ho Kyun;Kim Hae Cheon;Park Chong Ook
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.207-214
    • /
    • 2005
  • This paper presents a channel structure for promising high performance pseudomorphic high electron mobility transistor(pHEMT) switching device for design and fabricating of microwave control circuits, such as switches, phase shifters, attenuators, limiters, for application in personal mobile communication systems. Using the designed epitaxial channel layer structure and ETRI's $0.5\mu$m pHEMT switch process, single pole double throw (SPDT) Tx/Rx monolithic microwave integrated circuit (MMIC) switch was fabricated for 2.4 GHz and 5 GHz band wireless local area network (WLAN) systems. The SPDT switch exhibits a low insertion loss of 0.849 dB, high isolation of 32.638 dB, return loss of 11.006 dB, power transfer capability of 25dBm, and 3rd order intercept point of 42dBm at frequency of 5.8GHz and control voltage of 0/-3V These performances are enough for an application to 5 GHz band WLAN systems.