• Title/Summary/Keyword: Monitoring techniques

Search Result 1,441, Processing Time 0.031 seconds

Non-Invasive Plasma Monitoring Tools and Multivariate Analysis Techniques for Sensitivity Improvement

  • Jang, Haegyu;Lee, Hak-Seung;Lee, Honyoung;Chae, Heeyeop
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.328-339
    • /
    • 2014
  • In this article, plasma monitoring tools and mulivariate analysis techniques were reviewed. Optical emission spectroscopy was reviewed for a chemical composition analysis tool and RF V-I probe for a physical analysis tool for plasma monitoring. Multivariate analysis techniques are discussed to the sensitivity improvement. Principal component analysis (PCA) is one of the widely adopted multivariate analysis techniques and its application to end-point detection of plasma etching process is discussed.

Investigation of the real time stray current monitoring techniques on the DC railway system (직류전기철도에서의 실시간 누설전류 계측기법에 관한 조사분석)

  • Jung, Ho-Sung;Han, Moon-Seob;Park, Young;Kim, Hyeng-Chul;Kim, Jin-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.201-203
    • /
    • 2009
  • This paper presents the real time stray current monitoring techniques on the DC railway system. These techniques are two types. The first one is the rail potential measurement technique between running rail and earthing mats on the important locations such as substation, station, and so on. And the second one is measurement technique of stray current through substation earthing mats and from collection mats, and continuous monitoring of return currents through the running rails. We need to apply these techniques on DC railway system to monitor stray current periodically and maintain the system properly.

  • PDF

Comparison of various image fusion methods for impervious surface classification from VNREDSat-1

  • Luu, Hung V.;Pham, Manh V.;Man, Chuc D.;Bui, Hung Q.;Nguyen, Thanh T.N.
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 2016
  • Impervious surfaces are important indicators for urban development monitoring. Accurate mapping of urban impervious surfaces with observational satellites, such as VNREDSat-1, remains challenging due to the spectral diversity not captured by an individual PAN image. In this article, five multi-resolution image fusion techniques were compared for the task of classifting urban impervious surfaces. The result shows that for VNREDSat-1 dataset, UNB and Wavelet tranformation methods are the best techniques in reserving spatial and spectral information of original MS image, respectively. However, the UNB technique gives the best results when it comes to impervious surface classification, especially in the case of shadow areas included in non-impervious surface group.

On the Development of Monitoring Technique for Rebar Corrosion in Concrete using Sensor (부식센서를 이용한 콘크리트 철근부식 모니터링 기술 개발 연구)

  • 김용철;장상엽;조용범;이한승;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.163-168
    • /
    • 2003
  • By introducing corrosion monitoring techniques, steel corrosion in concrete may be evaluated at early stage. The monitoring probes in concrete detect the causes (chlorides and $CO_2$) of steel corrosion by being cast into the concrete or diffusing in from the outside. Various systems for corrosion monitoring in concrete are reviewed in this paper. These techniques are classified according to monitoring purposes such as corrosion potential or corrosion rate of steel and causes for corrosion etc.. Today, special interests are converged in development of corrosion sensor as a monitoring method of new concept.

  • PDF

A Design of Condition Monitoring System for Predictive Maintenance

  • Jeong, Hai-Sung;Kim, Heung H.;Sang K. Yun;Elsayed A. Elsayed
    • International Journal of Reliability and Applications
    • /
    • v.2 no.1
    • /
    • pp.57-71
    • /
    • 2001
  • Global competition to increase production output and to improve quality is spurring manufacturing companies to use condition monitoring and fault diagnostic systems for predictive maintenance. As monitoring, testing, and measuring techniques develop, predictive control of components and complete systems have become more practical and affordable. In this article, we will consider the computer based data acquisition system for condition monitoring and the condition parameter analysis techniques for fault detection and diagnostics in the machinery and briefly discuss reliability prediction and the limit value determination in condition monitoring.

  • PDF

Plasma Monitoring by Multivariate Analysis Techniques (다변량 분석기법을 통한 플라즈마 공정 모니터링 기술)

  • Jang, Haegyu;Koh, Kyongbeom;Lee, Honyoung;Chae, Heeyeop
    • Vacuum Magazine
    • /
    • v.2 no.4
    • /
    • pp.27-32
    • /
    • 2015
  • Plasma diagnosis and multivariate analysis techniques for plasma processes are reviewed. The principles and applications of optical emission spectroscopy (OES) and VI probe are discussed briefly. The research results of principal component analysis (PCA), one of the widely used multivariate analysis techniques for plasma process monitoring is discussed in this article.

Assessment of London underground tube tunnels - investigation, monitoring and analysis

  • Wright, Peter
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.239-262
    • /
    • 2010
  • Tube Lines has carried out a "knowledge and investigation programme" on the deep tube tunnels comprising the Jubilee, Northern and Piccadilly lines, as required by the PPP contract with London Underground. Many of the tunnels have been in use for over 100 years, so this assessment was considered essential to the future safe functioning of the system. This programme has involved a number of generic investigations which guide the assessment methodology and the analysis of some 5,000 individual structures. A significant amount of investigation has been carried out, including ultrasonic thickness measurement, detection of brickwork laminations using radar, stress measurement using magnetic techniques, determination of soil parameters using CPT, pressuremeter and laboratory testing, installation of piezometers, material and tunnel segment testing, and trialling of remote photographic techniques for inspection of large tunnels and shafts. Vibrating wire, potentiometer, electro level, optical and fibre-optic monitoring has been used, and laser measurement and laser scanning has been employed to measure tunnel circularity. It is considered that there is scope for considerable improvements in non-destructive testing technology for structural assessment in particular, and some ideas are offered as a "wish-list". Assessment reports have now been produced for all assets forming Tube Lines' deep tube tunnel network. For assets which are non-compliant with London Underground standards, the risk to the operating railway has to be maintained as low as reasonably practicable (ALARP) using enhanced inspection and monitoring, or repair where required. Monitoring techniques have developed greatly during recent years and further advances will continue to support the economic whole life asset management of infrastructure networks.

SHM data anomaly classification using machine learning strategies: A comparative study

  • Chou, Jau-Yu;Fu, Yuguang;Huang, Shieh-Kung;Chang, Chia-Ming
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.77-91
    • /
    • 2022
  • Various monitoring systems have been implemented in civil infrastructure to ensure structural safety and integrity. In long-term monitoring, these systems generate a large amount of data, where anomalies are not unusual and can pose unique challenges for structural health monitoring applications, such as system identification and damage detection. Therefore, developing efficient techniques is quite essential to recognize the anomalies in monitoring data. In this study, several machine learning techniques are explored and implemented to detect and classify various types of data anomalies. A field dataset, which consists of one month long acceleration data obtained from a long-span cable-stayed bridge in China, is employed to examine the machine learning techniques for automated data anomaly detection. These techniques include the statistic-based pattern recognition network, spectrogram-based convolutional neural network, image-based time history convolutional neural network, image-based time-frequency hybrid convolution neural network (GoogLeNet), and proposed ensemble neural network model. The ensemble model deliberately combines different machine learning models to enhance anomaly classification performance. The results show that all these techniques can successfully detect and classify six types of data anomalies (i.e., missing, minor, outlier, square, trend, drift). Moreover, both image-based time history convolutional neural network and GoogLeNet are further investigated for the capability of autonomous online anomaly classification and found to effectively classify anomalies with decent performance. As seen in comparison with accuracy, the proposed ensemble neural network model outperforms the other three machine learning techniques. This study also evaluates the proposed ensemble neural network model to a blind test dataset. As found in the results, this ensemble model is effective for data anomaly detection and applicable for the signal characteristics changing over time.

Reactor Coolant Pump Seal Monitoring System Using Statistical Modeling Techniques (통계적모델을 이용한 원자로냉각재펌프 밀봉장치 성능감시)

  • Lee, Song-Kyu;Chung, Chang-Kyu;Bae, Jong-Kil;Ahn, Sang-Ha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1386-1390
    • /
    • 2007
  • This paper presents the equipment condition monitoring technology for the process or the equipment using statistical techniques. The equipment condition monitoring system consists of an empirical model to estimate the expected sensor values of process variables and a diagnose model to detect the abnormal condition and to identify the root source of the problem. The empirical model is constructed by the analysis of historic data. The diagnose model uses the sequential probability ratio test (SPRT) technique. The monitoring system was tested with real operating data acquired from the Reactor Coolant Pump Seal in the Nuclear Power Plant. It can detect the system degradation or failure at the early stage since it is able to catch the subtle deviation of process variables from normal condition.

  • PDF