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Abstract. Global competition to increase production output and to
improve quality is spurring manufacturing companies to use condition
monitoring and fault diagnostic systems for predictive maintenance. As
monitoring, testing, and measuring techniques develop, predictive con-
trol of components and complete systems have become more practical
and affordable. In this article, we will consider the computer based data
acquisition system for condition monitoring and the condition parameter
analysis techniques for fault detection and diagnostics in the machinery
and briefly discuss reliability prediction and the limit value determina-
tion in condition monitoring.
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1. INTRODUCTION

Recently there have been increasing demands for high reliability of operating
process or manufacturing machines when they are running. Also catastrophic fail-
ures, availability, spare parts control, etc., are becoming more and more vital and
dominating factors in modern production plants. Acceptance of maintenance poli-
cies can be a worth-while investment in tackling such problems. Maintenance actions
or policies can be classified as corrective maintenance, preventive maintenance and
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on-condition maintenance which is also called predictive maintenance (Chan et al.,
1997). Maintenance actions are dependent on many factors such as the failure rate
of the machine, the cost associated with downtime, the cost of repair and the ex-
pected life of the machine. For example, a maintenance policy which requires no
repairs, replacements or preventive maintenance until failure allows for maximum
run-time between repairs. Although it allows for maximum run-time between re-
pairs it is neither economical nor efficient as it may result in a catastrophic failure
that requires extensive repair time and cost. Another widely used maintenance pol-
icy is to maintain the machine according to a predetermined schedule, whether a
problem is apparent or not. Actual repair costs can be reduced in this manner, but
production loss may increase if the machine is complex and requires days or even
weeks to maintain. This preventive maintenance also may create machine problems
where none existed before. Becker et al. (1998) cite a 1990 report from Electric
Power Research Institute (EPRI) which states that one-third of the money spent on
preventive maintenance in the electric power industry (which that year amounted
to $ 60 billion) was wasted. Obviously, if a machine failure can be predicted and the
machine can be taken off-line to make only the necessary repairs, a tremendous cost
saving can be made. Predictive maintenance can also be done when failure modes
for the machine can be identified and monitored for increased intensity and when
the machine can be shut down at a fixed control limit before critical fault levels are
reached.

The recent developments in sensors, chemical and physical non-destructive test-
ing (NDT), and sophisticated measurement techniques have facilitated the contin-
uous monitoring of the system performance. Today’s advances are raising the bar
toward machine prognostics, where failure modes and the remaining life of a sys-
tem can be predicted. For industry and the military, the 21st century will bring
about the age of prognostics and health-management systems (Becker et al., 1998).
Machine prognostics essentially involves taking data from sensors that are placed
on the various parts of the system to record specific system condition, and feeding
these data into a computer program so that potential system faults and failures can
be identified, tracked, and predicted. The aim of prognostics is to stop disabling or
fatal failures before they happen. The concept of prognostics goes beyond diagnos-
tics, in which the sensed data are simply monitored for the occurrence of anomalies
or failure that are then corrected. The prognostics process is analogous to the way
physicians deal with medical problems. First the problem is detected; then a di-
agnosis is made about the failure mode and its severity. It is also important to
predict the evolution of the failure in order to estimate the remaining useful life of
the machine.

There are three main tasks to be fulfilled for predictive maintenance. The first
task is to find the condition parameter which can describe the condition of the
machine. A condition parameter could be any characteristic such as crack, corrosion,
vibration etc., that is directly or indirectly connected with an item of the system and
its performance, and describes the condition of the item during the operating life.
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The second task is to monitor the condition parameter with suitable equipments.
The final task is to assess the current machine condition from the measured data and
to determine to determine the symptom limit value, Sy, whose two components are
the alarm value S, and the breakdown value S;. If a running machine reaches the
alarm value it is an indication that it is experiencing an intensive wearing. Hence
the type and advancement of the fault must be identified in order to prepare the
maintenance procedure. If a machine reaches the breakdown value, Sy, the shutdown
of a machine for maintenance becomes necessary.

In this article, leaving aside the choice of the condition parameter, we will con-
sider the computer based data acquisition system for condition monitoring and
briefly discuss reliability prediction and the limit value determination in condition
monitoring.

2. DATA ACQUISITION SYSTEM

Modern computer technology permits a steady state dynamic data collection
and analysis system. By interfacing data acquisition system with the computer, raw
data can be converted into meaningful information regarding the present condition
of the system and a schedule for the desired predictive maintenance. In this Section,
we discuss the elements of the computer based data acquisition (DAQ) system. The
most common DAQ systems use a desktop PC or laptop computer with a plug-in
DAQ hardware, signal coditioner, and transducers as showen in Figure 1.

laptop

signal
CONGIEONEN .
P "

transducers software

Figure 1. The Typical Data Acquisition System

Transducers

Transducers change physical phenomena into electrical signals. According to the
concerned physical phenomena, there are many kind of transducers. For example,
proximity transducers, velocity transducers and accelerometer convert the mechan-
ical vibration to an electrical signal. Thermocouple changes the temperature into a
voltage.

59
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Signal Conditioner

Transducer output must often be conditioned to provide signals suitable for the DAQ
hardware. The most common type of signal conditioning is amplification. Another
common application for signal conditioning is filtering. Filtering removes unwanted
noise from the signal that you are trying to measure. The others are isolation,
excitation, and linearization etc. '

Data Acquisition Hardware

The DAQ board or card digitizes incoming analog signal for software. There are some
basic considerations of signal conversion. We will show three important cosiderations
among them.

Resolution

When converting the analog value into a digital one, the number of bits in the analog
to digital converter (ADC) affects the resolution of the result. The ADC divides the
input signal values into steps, based on the number of bits and the instrument’s full
scale range. A 8 bit converter divides the analog range into 28 = 256 steps.

Range
Range refers the minimum and maximum voltage levels that the ADC can span.

Sampling Rates

This shows how often conversions can take place. With a faster sampling rate, you
can acquire more points in a given time. As you expect, this provides a better
representation of the original signal.

Software
Software is needed to program for acquiring, analyzing, and presenting the informa-
tion from DAQ hardward.

Figure 2. Window for Temperature Monitoring

Now, you can build a window for temperature monitoring as Figure 2. This
window will obtain a volatage from a plug-in DAQ board inside the computer and
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convert the volatage into a Fahrenheil or Celsius temperature reading. Forthermore
you can detect when a temperature is out of range and if the temperature exceeds
the high limit, a warning indicator will turn on and a beep will sound.

3. INFORMATION FOR CONDITION MONITORING

As discussed above, condition monitoring requires observing a condition param-
eter with time. When the parameter’s value degrades and reaches a predetermined
limit, Sg,, then a corrective action is taken accordingly. In this Section, we present
three approaches for determining the limit values of typical condition parameter.

3.1 Reliability Estimation Based on Degradation Data

The limit value, S1,, can be determined by observing the changes in the condi-
tion parameter with time. The value of S, can be corresponded to an acceptable
reliability value of the system as described below.

It is assumed that the effect of the degradation phenomenon on the system
performance or the condition parameter can be expressed by a random variable called
degradation criterion. It is clear that units with the same age would have different
degradation criterion levels. Figure 3 is a plot of the crack-length measurements
versus time (in million cycles) from Bogdanoff and Kozin (1985). There are 21
degradation paths, one for each of 21 test units. From this plot, we can find that the
degradation criterion is a time-dependent random variable that can follow different
distributions at different distinct times.

In general, the degradation criterion, X, may follow a distribution which changes
with time in the type of the distribution family and its parameters as shown in Figure
4. The solid curve represents the mean of the degradation criterion versus time and
the areas under the density functions and above the threshold level line represent
the failure probability at the corresponding times.

Miliors of Oydles

Figure 3. Fatigue-Crack-Growth Data from Bogdanoff and Kozin(1985)
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Figure 4. f(z;t) versus t for MIDP

Eghbali and Elsayed (1997) develop a statistical approach based on degradation
data. They assume the degradation criterion follows the same distribution family
but its parameters may change with time. Furthermore, it is assumed that the
degradation paths are monotonic functions of time; they are either Monotonically
Increasing Degradation Paths (MIDP) or Monotonically Decreasing Degradation
Paths (MDDP). They define:

X degradation criterion (random variable), z > 0

f(z;t) probability density function (pdf) of the degradation criterion, X, at a
given time ¢

A(z;t) failure rate function of f(z;t), referred to as the degradation failure rate
function

The corresponding degradation criterion distribution for this degradation model
is a Weibull distribution with a time-dependent scale parameter.
flz;t) = g1 exp[ﬂ] t>0
e o(t)”
where 0(t) = bexp(—at) is the scale parameter, z is the degradation criterion at
which a failure occurs and a, b,y are constants. The corresponding reliability func-
tion can then be determined as

—7

Ry(t) = P(X > z;t) = exp| ]

bexp(—at)
Conversely, if the desired reliability at time ¢, R (¢) is given, the level of the degrada-
tion criterion, z, which is equivalent to the breakdown value, S, can be determined.
Hence we use the above equation to determine S} corresponding to Rg,(t).
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Important studies that have used degradation data to assess reliability can be
found in Gertsbackh and Kordonskiy (1969), Nelson (1981), Carey and Koenig
(1991), Lu and Meeker (1993), Chick and Mendel (1996), Feinberg and Widom
(1996), Lu et al. (1997), Meeker et al. (1998), and Ettouney and Elsayed (1999).

3.2 Determination of the Limit Values in Condition Monitoring

The last stage of condition monitoring is the inferences on the machine condition
which is based on values of the condition parameter, S. One of them is to assess the
symptom limit value, S;. The knowledge of the limit values is of great importance
for critical machines which run continuously with automatic monitoring and shut-
down system. However in the most cases of diagnostic implementation, for large
and expensive machinery in particular, it is difficult to perform active diagnostic
experiments, which means establishing the S; on the basis of the known machine
condition. Hence the determination of Sy, is possible only as the result of passive
diagnostic experiments, where the values of S are observed on the group of running
machines without knowledge of their condition.

Detailed description of condition inference techniques can be found in Cempel
(1984, 1985, 1987, 1990). A simple solution for determining Sy, is given by Dabrowski
(1981). It is determined in the way its tail probability does not exceed a given small
level, a ; Pr (S > S.) < a. Another possible way of determining Sy, from pas-
sive experimental data is based on the Neyman-Pearson technique of the statistical
decision theory. It minimizes the number of breakdowns at an assumed and al-
lowed percent of needless repairs, A, by means of a proper choice of the breakdown
symptom value, S;. According to Cempel(1985), this condition of minimizing the
breakdown number can be written as follows

o0
A=PF, p(s)ds, (3.1)
Sp
where p(s) is the pdf of the condition parameter, S, and P, is the probability of
good machine condition.
Cempel (1987) treated observed symptoms as an outcome of Weibull type stochas-
tic process and estimated Sy using Eq. (3.1). Additionally he defined the alarm
symptom value, S,, and estimated it using the following equation. '

Sy
A= Pg/ p(s)ds.
Sa

Recently, in an attempt to develop a realistic approach to determine the main-
tenance policy, proportional hazards model (PHM) is used to schedule for mainte-
nance. Performance of a system is influenced not only the operating time, but by
other factors. These influencing factors include operating condition (e.q., vibration
levels, temperature, pressure, levels of metal particles in engine oil, humidity, dust)
and operating history (e.q., number of previous overhauls, time since last failure and
maintenance). They are generally referred to as covariates or explanatory variables.
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Given all the explanatory variables, PHM can be used to identify the explanatory
factors of interest and to schedule for maintenance.

h(t,z) = ho(t)e”,

where h(t,z) is the hazard function at time ¢ for observations with covariate vector,
z, ho(t) is an unspecified baseline hazard function (i.e. the hazard function when
all covariates are zero), and  is a vector of unknown regression coefficients. This
model assumes that the covariates act multiplicatively on the hazard function, so
that for different values of the explanatory variables the hazard functions at each
time are proportional to each other. The use of the PHM in maintenance decision
making is described in Jardine et al. (1989), Love and Geo (1991a, b) and Kobbacy
et al. (1997).

4. VIBRATION MONOTORING

Most industrial machinery operate by means of motors and other rotating parts
which will eventually cause faults. These faults may cause the machine to break
down and degrade its performance. Generally, when a machine develops a fault, it
gives a signal in various forms, e.g. changes in vibration, pressure, oil characteristics,
etc. In rotating machinery such as gear boxes and bearings, vibration signal is
commonly used for fault diagnostics. This is due the fact that when a machine
or a structural component is in good condition, its vibration profile has a normal
characteristic shape, and it changes as a fault begins to develop (Paya et al., 1997).

4.1 Vibration Measurement

Vibration is a oscillating motion, exerted upon the machine at regular intervals
related to the speed of rotation and causing the physical displacement of some por-
tion of the machine in response to this force (Callaway, 1982). This motion produces
a transducer volatage output that varies over time. For simple motion, when this
volatage is plotted against time, a sinusoidal waveform is produced. The signal chra-
teristics of this waveform will provide the basic vibration measurement information
concerning machinery condition. The vibration is defined and is measured by the
following characteristics.

Amplitude
Vibration amplitude can be expressed as peak to peak or zero to peak and measured
as displacement, velocity or acceleration.

Frequency

The smallest interval of time to complete a vibration cycle is a period. Vibration
frequency is defined as the number of cycles completed in a unit of time , expressed
in cycles per minute (cpm) or cycles per second (Hz).

Phase Angle
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Phase angle is the fractional part of a period between a reference (zero vibration am-
plitude) and a particular time of interest (some vibration amplitude), it is measured
in degrees using a circle as a complete period of vibration (360°).

Form
The form of the vibration is an important means of presenting vibration for analy-
sis. The three previously discussed charateristics have all been measurable quantities
that can be displayed. Vibration form is the raw waveform displayed on an oscillo-
scope.

4.2 Vibration Analysis

Condition monitoring techniques based on vibration data analysis are classified
into two types; the first, analytic methods, are suitable for diagnosis of specific
faults while the second, discriminant methods, simply relate the general condition
to a single number or series of numbers. Although analytic methods can yield
considerable information, they require skilled interpretation of data and a large part
of the success of these methods is due to the analyst. Discriminant methods require
less skilled operators although this may lead to a reduction in the reliability of the
techniques. You can refer these methods for more information in Jeong and Elsayed
(2000).

5. SOUND RECOGNITION AND ACOUSTIC EMISSION

Sound recognition is used to detect a wide range of abnormal occurrences in man-
ufacturing processes. The sound recognition system recognizes various operational
sounds, including stationary and shock sounds, using a speech recognition technique;
then compares them with the expected normal operational sounds (Takata and Ahn,
1987). :

Acoustic emission (AE) is defined as the transient elastic energy spontaneously
released from materials undergoing deformation, fracture or both. The released
energy produces high-frequency acoustic signals. The strength of the signals depends
on parameters such as the rate of deformation, the volume of the participating
material and the magnitude of the applied stress. AE is used in many applications
such as non-destructive evaluation and materials research.

The first known comprehensive investigation of AE was performed by Kaiser
(1953). In fact, Kaiser characterized a basic irreversibility phenomenon which bears
his name. In the Kaiser Effect, when a material is stressed to a given level and the
stress removed, upon reapplication of stress there is no detectable emission at a fixed
sensitivity level until previously applied stress levels have been exceeded. Advances
in both materials science and electronics technology have contributed to bring AE
to the forefront of new NDT methods. The signals can be detected by sensors often
placed several feet away from the source of signal generation. There are presently
many AE transducers and sensors that can be utilized for specific applications. You
can refer the ananysis of AE data in Jeong and Elsayed (2000).
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6. OTHER CONDITION PARAMETER MONITORINGS

There are other condition parameters that can be used for default analysis. One
condition parameter measurement,whatever it serves you, is never enough to moni-
toring the condition of the machine. The good technique that increase the effective-
ness of the condition parameter is to correlate the condition parameter with other
machine characteristics, for example, vibration versus temperature, vibration versus
oil condition, temperature versus oil condition, etc.

6.1 Temperature Monitoring

Elevation in component or equipment temperature is frequently an indication
of potential problems. For example, most of the failures of electric motors are at-
tributed to excessive heat which is generated by antifriction bearings. The bearing
life is dependent on its maintenance schedule and their operating conditions. Sim-
ilarly, hot spots, which are usually caused by excessive currents, in electric boards
indicate that failure is imminent. Therefore, a measure of temperature variation can
be effectively used in monitoring components and equipment for predictive mainte-
nance purposes. In most electrical equipment, the limiting components are made
from polymeric materials and they age because of thermal degradation. The rate
at which they age can be calculated using the activation energy for the degradation
process, which is obtained from accelerated ageing tests.

The effect of temperature on the device is generally modeled using the Arrhenius
reaction rate equation given by

r = Ae~(Ba/kT), (6.1)
where

r = the speed of reaction,

an unknown nonthermal constant,

E, the activation enerage (eV),
k = the Boltzman Constant (8.6231075 eV /°K),

T = the temperature in Kelvin.

Assuming that device life is proportional to the inverse reaction rate of the
process, then Eq. (6.1) can be rewritten as

L= AeHE/RT),

where L is the nominal life of the device. Using this Arrhenius model, the life
distribution related to the monitored temperature can be estimated. Also, we can
obtain the failure rate and temperature behaviour curve over time. From here we
can determine the maintenance schedule as discussed in Section 3.

There are many transducers that respond to changes in temperature with varying
electrical signals. The signal conditioning is required for these transducers.
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6.2 Fluid Monitoring

Analysis of equipment fluids such as oil can reveal important information about
the equipment wear and performance. It can also be used to predict the reliability
and expected remaining life of parts of the equipment. Measuring oil quality is usu-
ally done with a complex chemical laboratory benchmark procedure that measures
several parameters indicating oil degradation. These factors include the particle
count, the types of particles, and total acid number. As the equipment operates,
minute particles of metal are produced from the oil covered parts. The particles
remain in suspension in the oil and are not removed by the oil filters due to their
small size. The particle count will increase as equipment parts wear out. There are
several methods that can identify the particle count and the types of particles in the
oil.

A different approach to monitoring engine oil quality has been developed by
an automotive industry where a mathematical model uses the engine’s computers
to infer the rate of oil degradation from data already being collected by various
systems within the vehicle. Schwartz et al. (1987) found that oil temperature, vehicle
mileage, engine revolutions, and changes in the physical and chemical properties
of oil during use all provided an indication of oil degradation. Based on these
measurements, they developed a mathematical model which relates o1l life to oil
temperature and either vehicle mileage or engine revolutions.

A combined approach of monitoring driving conditions and using sensors has
also been taken by another automotive industry. They developed a passenger car
maintenance system which calculates oil change intervals based on driver-specific
data, and supplements that information with a sensor that continuously monitors
oil level, oil temperature, and the dielectric number of the engine oil (DeGaspari,

1999).

Jardine et al. (1989) studied an interesting examination of the method of propor-
tional hazards modelling (PHM) to determine whether or not PHM could improve
on the accuracy of the oil-analyst/expert system in determining the risk of failure
of a diesel engine.

6.3 Corrosion Monitoring

Corrosion is a degradation mechanism of many metallic components. Clearly,
monitoring the rate of degradation, i.e., the amount of corrosion, has a major impact
on the preventive maintenance schedule and the availability of the system. There
are many techniques for monitoring corrosion such as visual, ultrasonic thickness
monitoring, electrochemical noise, impedance measurements, and thin layer activa-
tion.

Corrosion causes degradation in the system’s performance and it becomes nec-
essary to determine the time for the performance to degrade to a threshold value.
Reliability prediction using the degradation data can be obtained accordingly as
described in Ettouney and Elsayed (1999).
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6.4 Other Diagnostic Methods

Components and systems can be monitored in order to perform maintenance
and replacements by observing some of the critical characteristics using a variety
of sensors or microsensors. For example, pneumatic and hydraulic systems can be
monitored by observing pressure, density of the flow, rate of flow, and temperature
change. Similarly, electrical components or systems can be monitored by observing
the change in resistance, capacitance, volt, current, temperature, and magnetic field
intensity. Mechanical components and systems can be monitored by measuring ve-
locities, stress, angular movements, shock impulse, temperature, and force (Elsayed,
1996).

Recent technological advances in measurements and sensors resulted in observing
characteristics that were difficult or impossible to observe, such as odor sensing.
At this point of time silicon microsensors have been developed that are capable
of mimicking the human sense of sight (e.g., a CCD), touch (e.g., a tactile sensor
array), and hearing (e.g., silicon microphone). Sensors to mimic the human sense of
smell to discriminate between different odor types or notes are at the early stage of
development. Nevertheless, some commercial odor discriminating sensors are now
available such as the Fox 2000 or Intelligent Nose (Alpha MOS, France).

The improvements in sensors’ accuracy and the significant reduction in their cost
have resulted in their use in a wide variety of applications. For example, most of
the automobiles are now equipped with electronic diagnostic systems which provide
signals indicating the times to service the engine, replace the oil filter, and check
engine fluids.

Most importantly, the advances in microcomputers, microprocessors, and sensors
can now offer significant benefits to the area of preventive maintenance and replace-
ments. Many components, systems, and entire plants can now be continuously
monitored for sources of disturbances and potential failures. Moreover, on-line mea-
surements, analysis, and control of properties and characteristics, which have been
traditionally performed off-line, result in monitoring of a wider range of components
and systems than ever before.

CONCLUSIONS

This article presents different approaches for condition monitoring and fault di-
agnostics system for predictive maintenance. It describes methodologies for deter-
mining the limit value of the condition parameter (or criterion) which corresponds
to a predetermined reliability level. It then provides details of the most commonly
used condition parameters, starting with vibration, acoustic emission and concluding
with feature extraction. Applicability of such condition parameters and advantages
and disadvantages are also discussed.
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