• 제목/요약/키워드: Momentum force

검색결과 237건 처리시간 0.035초

바디포오스가 큰 유동해석시 운동량보간법의 사용에 관한 연구 (On the Use of Momentum Interpolation Method for flows Involving A Large Body force)

  • 최석기;김성오;최훈기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.553-556
    • /
    • 2002
  • A numerical study on the use of the momentum interpolation mettled for flows with a large body force is presented. The inherent problems of the momentum interpolation method are discussed first. Numerical experiments are performed for a typical flow involving a large body force. The tact that the momentum interpolation method may result in physically unrealistic solutions is demonstrated. Numerical experiments changing the numerical grid have shown that a simple way of removing the physically unrealistic solution is a proper grid refinement where there is a large pressure gradient. An effective way of specifying the pressure and pressure correction at the boundary by a local mass conservation near the boundary is proposed, and it is shown that this method can effectively remove the inherent problem of the specification of pressure and pressure correction at the boundary when one uses the momentum interpolation method.

  • PDF

바디포오스가 큰 유동에서 운동량보간법의 사용에 관한 연구 (A Study on the Use of Momentum Interpolation Method for Flows with a Large Body Force)

  • 최석기;김성오;최훈기
    • 한국전산유체공학회지
    • /
    • 제7권2호
    • /
    • pp.8-16
    • /
    • 2002
  • A numerical study on the use of the momentum interpolation method for flows with a large body force is presented. The inherent problems of the momentum interpolation method are discussed first. The origins of problems of the momentum interpolation methods are the validity of linear assumptions employed for the evaluation of the cell-face velocities, the enforcement of mass conservation for the cell-centered velocities and the specification of pressure and pressure correction at the boundary. Numerical experiments are performed for a typical flow involving a large body force. The numerical results are compared with those by the staggered grid method. The fact that the momentum interpolation method may result in physically unrealistic solutions is demonstrated. Numerical experiments changing the numerical grid have shown that a simple way of removing the physically unrealistic solution is a proper grid refinement where there is a large pressure gradient. An effective way of specifying the pressure and pressure correction at the boundary by a local mass conservation near the boundary is proposed, and it is shown that this method can effectively remove the inherent problem of the specification of pressure and pressure correction at the boundary when one uses the momentum interpolation method.

Partition method of wall friction and interfacial drag force model for horizontal two-phase flows

  • Hibiki, Takashi;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1495-1507
    • /
    • 2022
  • The improvement of thermal-hydraulic analysis techniques is essential to ensure the safety and reliability of nuclear power plants. The one-dimensional two-fluid model has been adopted in state-of-the-art thermal-hydraulic system codes. Current constitutive equations used in the system codes reach a mature level. Some exceptions are the partition method of wall friction in the momentum equation of the two-fluid model and the interfacial drag force model for a horizontal two-phase flow. This study is focused on deriving the partition method of wall friction in the momentum equation of the two-fluid model and modeling the interfacial drag force model for a horizontal bubbly flow. The one-dimensional momentum equation in the two-fluid model is derived from the local momentum equation. The derived one-dimensional momentum equation demonstrates that total wall friction should be apportioned to gas and liquid phases based on the phasic volume fraction, which is the same as that used in the SPACE code. The constitutive equations for the interfacial drag force are also identified. Based on the assessments, the Rassame-Hibiki correlation, Hibiki-Ishii correlation, Ishii-Zuber correlation, and Rassame-Hibiki correlation are recommended for computing the distribution parameter, interfacial area concentration, drag coefficient, and relative velocity covariance of a horizontal bubbly flow, respectively.

개수로흐름 해석에서 운동량방정식의 특성 (Characteristics of the Momentum Equation in Open Channel Flow)

  • 전민우;조용수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.1111-1115
    • /
    • 2008
  • The relative magnitudes of the individual terms of the momentum equation are analyzed and compared by the analytical methods in open channel flow. The temporal variations of each term(local acceleration term, convective acceleration term, pressure force term, gravity force term, and friction force term) are analyzed for the influence factors to runoff expressed by the parameters of the momentum equation, stream slopes and roughness coefficients. The magnitudes of each term vary with the channel characteristics, especially when the roughness coefficients are dominant or for the mild stream slopes the pressure term can not be negligible. As a result of the characteristics of momentum equation in open channel flow, the acceleration terms are very small compared with the other terms. The magnitudes of local acceleration and convective acceleration offsets each other. The peak time of each term except the gravity term coincides with inflection point of the hydrograph rising limb each other.

  • PDF

용적 내부의 유동에 의한 모멘텀을 고려한 GMA 용접의 입상용적 이행에 대한 해석 (Analysis of Globular Transfer Considering Momentum Induced by Flow Within Molten Drop in GMAW)

  • ;이승현;강문진;유중돈
    • Journal of Welding and Joining
    • /
    • 제26권4호
    • /
    • pp.61-65
    • /
    • 2008
  • The static force balance model (SFBM) has been used to analyze drop transfer in gas metal arc welding. Although the SFBM is capable of predicting the detaching drop size in the globular mode with reasonable accuracy, discrepancy between the calculated and experimental results increases with current. In order to reduce discrepancy, the SFBM is modified by considering the momentum of the molten metal flow, which is generated by the pinch pressure. The momentum increases with smaller drop size and becomes compatible to the electromagnetic force. The modified force balance model (MFBM) predicts the experimental results more accurately, and extends its application to the projected mode.

골프공에 가해진 운동량과 평균력 (Momentum and Average Force applied to Golf Ballm)

  • 신광성;이양원
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 춘계학술대회
    • /
    • pp.157-158
    • /
    • 2011
  • 골프채로 공을 치면 골프공은 충돌로 인하여 커다란 속도로 긴 거리를 날아간다. 본 논문에서는 골프채와 골프공이 충돌 한 후의 운동량의 크기를 구하고자 한다. 또한 골프채와 골프공의 충돌 시간과 공에 작용한 평균력을 구한다. 우리는 물체에 작용하는 충격량은 물체의 운동량의 변화화 같음을 알 수 있다. 그리고 평균력은 시간에의해 변하는 힘 대신에 어떤 물체의 실제 힘과 똑같은 충격량을 주는 일정한 힘임을 알 수 있다.

  • PDF

힘센서를 이용한 기상 연료의 과도적 분사율 계측에 관한 연구 (A Study on Transient Injection Rate Measurement of Gas Fuels Using Force Sensor)

  • 이재현;배규한;기영민;문석수
    • 한국분무공학회지
    • /
    • 제27권4호
    • /
    • pp.181-187
    • /
    • 2022
  • For carbon neutrality, direct-injection hydrogen engines are attracting attention as a future power source. It is essential to estimate the transient injection rate of hydrogen for the optimization of hydrogen injection in direct injection engines. However, conventional injection rate measurement techniques for liquid fuels based on the injection-induced fuel pressure change in a test section are difficult to be applied to gaseous fuels due to the compressibility of the gas and the sealing issue of the components. In this study, a momentum flux measurement technique is introduced to obtain the transient injection rate of gaseous fuels using a force sensor. The injection rate calculation models associated with the momentum flux measurement technique are presented first. Then, the volumetric injection rates are estimated based on the momentum flux data and the calculation models and compared with those measured by a volumetric flow rate meter. The results showed that the momentum flux measurement can detect the injection start and end timings and the transient and steady regimes of the fuel injection. However, the estimated volumetric injection rates showed a large difference from the measured injection rates. An alternative method is suggested that corrects the estimated injection rate results based on the measured mean volumetric flow rates.

A Far Field Solution of the Slowly Varying Drift Force on the Offshore Structure in Bichromatic Waves-Three Dimensional Problems

  • Lee, Sang-Moo
    • 한국해양공학회지
    • /
    • 제24권6호
    • /
    • pp.1-6
    • /
    • 2010
  • A far field approximate solution of the slowly varying force on a 3 dimensional offshore structure in gravity ocean waves is presented. The first order potential, or at least the far field form of the Kochin function, of each frequency wave is assumed to be known. The momentum flux of the fluid domain is formulated to find the time variant force acting on the floating body in bichromatic waves. The second order difference frequency force is identified and extracted from the time variant force. The final solution is expressed as the circular integration of the product of Kochin functions. The limiting form of the slowly varying force is identical to the mean drift force. It shows that the slowly varying force components caused by the body disturbance potential can be evaluated at the far field.

연식주퇴 시스템의 전방운동량에 관한 연구 (A Study on the Forward Momentum of a Soft Recoil System)

  • 박선영;배재성;황재혁;강국정;안상태
    • 한국군사과학기술학회지
    • /
    • 제13권6호
    • /
    • pp.976-981
    • /
    • 2010
  • A soft-recoil or FOOB (Fire-Out-Of-Battery) system can reduce the recoil force considerably. Its firing sequency is different from that of a conventional or FIB (Fire-In-Battery) system. In FOOB system, the gun is latched and preloaded in its battery position prior to firing. When unlatched, the gun is accelerated to the forward direction and then the forward momentum of the recoil part is generated. Since this momentum reduces the recoil impulse, the recoil force will decrease significantly. When designing the soft-recoil system it is important to design the forward momentum profile of a recoiling part. In the present study, the method to determine the forward momentum has been studied and its optimum value has been obtained theoretically. The numerical simulation of the soft-recoil system is performed to show that the present soft-recoil system works functionally well.

부유식 해양구조물에 작용하는 시감평균 파표류력에 관한 고찰 (On the Time-Mean Drift Force Acting on a Floating Offshore Structure in Wave)

  • 홍도천
    • 한국해양공학회지
    • /
    • 제16권3호
    • /
    • pp.8-18
    • /
    • 2002
  • Formulation of the far-field method for the prediction of time-mean hydrodynamic force and moment acting on a 3-D surface-piercing body in waves is reviewed. It is found that the inequality between the weight of the floating body and its buoyancy force permits the replacement of the fluid particles inside the control surface by the fluid particles outside the control surface. Under such circumstances, momentum exchanges across the control surface make the time-mean value of the time rate of the momentum of the fluid inside the control surface non-vanishing. It is a second-order quantity which is hard to calculate by the far-field method. The drift forces and moments on half-immersed ellipsoids are calculated by both the far-field method and the near-field method. The discrepancy between two numerical results is presented and discussed.