DOI QR코드

DOI QR Code

A Study on Transient Injection Rate Measurement of Gas Fuels Using Force Sensor

힘센서를 이용한 기상 연료의 과도적 분사율 계측에 관한 연구

  • Jaehyun, Lee ;
  • Gyuhan, Bae ;
  • Youngmin, Ki ;
  • Seoksu, Moon
  • 이재현 (인하대학교 기계공학과) ;
  • 배규한 (인하대학교 기계공학과) ;
  • 기영민 (인하대학교 기계공학과) ;
  • 문석수 (인하대학교 기계공학과)
  • Received : 2022.09.07
  • Accepted : 2022.09.21
  • Published : 2022.12.31

Abstract

For carbon neutrality, direct-injection hydrogen engines are attracting attention as a future power source. It is essential to estimate the transient injection rate of hydrogen for the optimization of hydrogen injection in direct injection engines. However, conventional injection rate measurement techniques for liquid fuels based on the injection-induced fuel pressure change in a test section are difficult to be applied to gaseous fuels due to the compressibility of the gas and the sealing issue of the components. In this study, a momentum flux measurement technique is introduced to obtain the transient injection rate of gaseous fuels using a force sensor. The injection rate calculation models associated with the momentum flux measurement technique are presented first. Then, the volumetric injection rates are estimated based on the momentum flux data and the calculation models and compared with those measured by a volumetric flow rate meter. The results showed that the momentum flux measurement can detect the injection start and end timings and the transient and steady regimes of the fuel injection. However, the estimated volumetric injection rates showed a large difference from the measured injection rates. An alternative method is suggested that corrects the estimated injection rate results based on the measured mean volumetric flow rates.

Keywords

Acknowledgement

이 연구는 2022년도 산업통상자원부 및 산업기술평가관리원(KEIT)의 연구비 지원에 의한 연구임(과제번호: 20018473).

References

  1. A. Onorati, R. Payri, B. M. Vaglieco, A. K. Agarwal, C. Bae, G. Bruneaux, M. Canakci, M. Gavaises, M. Gunthner, C. Hasse, S. Kokjohn, S-C. Kong, Y. Moriyoshi, R. Novella, A. Pesyridis, R. Reitz, T. Ryan, R. Wagner and H. Zhao, "The role of hydrogen for future internal combustion engines", Int. J. Engine Res., Vol. 23, No. 4, 2022, pp. 529~540. https://doi.org/10.1177/14680874221081947
  2. L. Rouleau, F. Duffour, B. Walter, R. Kumar and L. Nowak, "Experimental and Numerical Investigation on Hydrogen Internal Combustion Engine", SAE Tech. Pap., 2021, 2021-24-0060.
  3. H. L. Yip, A. Srna, A. Chun, Y. Yuen, S. Kook, R. A. Taylor, G. H. Yeoh, P. R. Medwell and Q. N. Chan, "A review of hydrogen direct injection for internal combustion engines: Towards carbon-free combustion", Appl. Sci., Vol. 9, No. 22, 2019, pp. 1~30.
  4. S. Lee, G. Kim and C. Bae, "Behavior of hydrogen hollow-cone spray depending on the ambient pressure", Int. J. Hydrogen Energy, Vol. 46, No. 5, 2021, pp. 4538~4554. https://doi.org/10.1016/j.ijhydene.2020.11.001
  5. W. Bosch, "The fuel rate indicator: A new measuring instrument for display of the characteristics of individual injection", SAE Tech. Pap., 1966, 1966-02-01.
  6. A. Takamura, T. Ohta, S. Fukushima and T. Kamimoto, "A study on precise measurement of diesel fuel injection rate", SAE Tech. Pap., 1992, 920630.
  7. G. R. Bower and D. E. Foster, "A comparison of the bosch and zuech rate of injection meters", SAE Tech. Pap., 1991, 910724.
  8. J. M. Desantes, R. Payri, F. J. Salvador and J. Gimeno, "Measurements of spray momentum for the study of cavitation in diesel injection nozzles", SAE Tech. Pap., 2003, 2003-01-0703.
  9. R. Payri, F. J. Salvador, J. Gimeno and L. D. Zapata, "Diesel nozzle geometry influence on spray liquid-phase fuel penetration in evaporative conditions", Fuel, Vol. 87, No. 7, 2008, pp. 1165~1176. https://doi.org/10.1016/j.fuel.2007.05.058
  10. F. M. White, Fluid Mechanics. McGraw-Hill, 2015.