• 제목/요약/키워드: Moment of Engine Inertia

검색결과 39건 처리시간 0.03초

엔진 관성력과 피칭모멘트 저감을 위한 밸런스샤프트의 동역학 설계 (Dynamic Analysis Design of Balance Shaft for Reducing Engine Inertia Force and Pitching Moment)

  • 김병준;부광석;김흥섭
    • 한국융합학회논문지
    • /
    • 제13권4호
    • /
    • pp.307-313
    • /
    • 2022
  • 차량 실내소음이 엔진의 고출력화와 경량화로 인해 더욱 심각해져 엔진진동의 저감의 중요성이 높아지고 있다. 최근 엔진진동 저감의 대표적인 방법으로 밸런스샤프트 부착이 제시되고 있다. 밸런스샤프트는 피스톤과 콘로드 등의 왕복운동에서 발생하는 진동을 임의의 편심질량을 이용하여 상쇄시키는 장치이다. 따라서 밸런스샤프트는 연비향상 및 차량의 승차감을 동시에 향상시킬 수 있다. 본 논문은 엔진구조로 인해 발생하는 관성력을 유도하고 이를 상쇄하기 위한 밸런스샤프트의 불평형량과 형상을 제시한다. 제시된 두가지 형상의 밸런스샤프트를 ADAMS 다물체동역학 모델로 구현하고, 이를 동역학 시뮬레이션을 통해 실제 거동상태에서의 관성력의 저감을 확인하였다.

실험적 모우드해석을 통한 엔진 마운트계의 동역학적 모델링 (Dynamic modeling of engine/mount system via experimental modal analysis)

  • 정경렬;조치영;이종원
    • 오토저널
    • /
    • 제10권2호
    • /
    • pp.39-45
    • /
    • 1988
  • The analytical model of an engine mount system with six degrees of freedom is identified using the modal parameters obtained from the experimental modal analysis. The structural parameters, mass moment of inertia of the engine block and stiffness of the rubber mounts, of the engine mount system are determined by using the condition that the estimated model parameters should satisfy the corresponding eigenvalue problem. The simulated modal parameters of the identified analytical model are in good agreement with the measured modal parameters.

  • PDF

탄성 마운트 장착 디젤 발전기 세트의 진동 특성과 예방에 대한 연구 (Vibration characteristics of diesel generator set with resilient mount and prevention of vibration on the design stage)

  • 이군희;배종국;이수목
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.921-924
    • /
    • 2005
  • Diesel generator sets with resilient mounts often experience resonances by major excitations which come from diesel engine and their foundation with rigid body modes. Because their natural frequency is determined by moment of inertia and stiffness of resilient mount vibration problems are resolved by changing location and stiffness of resilient mounts. But the calculated natural frequencies are inaccurate due to uncertainty of the inertia and mount stiffness. So this result can be useless on the design stage. In this paper, the stiffness of mount is evaluated on result from mount stiffness test in laboratory and generator set vibration test and a simple calculation method for moment of inertia is proposed. Based on these data, the procedure to select optimized mount stiffness and location on the design stage is set up.

  • PDF

실험적 모우드해석을 통한 4WD 자동차의 엔진마운트에 관한 연구 (A study on the Engine Mounting System of the 4WD Vehicle by Experimental Modal Analysis)

  • 사종성;김광식
    • 소음진동
    • /
    • 제1권1호
    • /
    • pp.39-43
    • /
    • 1991
  • In this study, the design concept of engine for 4WD vehicle is established by the experimental modal analysis. First, the relationships between frame and power transmission system are considered. Second, the effect of additional system (Front propeller shaft and Exhaust system) on the power transmission system is evaluated. As a result, it is desirable that of frame and power transmission system is shifted by the additional system. This is cause by the moment of inertia of the additional system, because the center of gravity location of the additional system is far from that of the power transmission system.

  • PDF

Dual Mass Flywheel 시스템의 설계파라미터에 관한 연구

  • 송준혁
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 추계학술대회 논문
    • /
    • pp.167-172
    • /
    • 1996
  • A Dual Mass Flywheel system is a evolution to the reduction of torsional vibration and impact noise occuring in powertrain when a vehicle is eit-her moving or idling. The name already explains what it is : The mass of the conventional single mass flywheel is divided. One section continues to belong to the mass moment of inertia of the engine-side. The ot-her section increass the mass moment of inertia of the transmission-side. The two masses are connected via a spring /damping system. This reduces the speed at which the dreaded resonance occurs to below idle speed. Since 1984 Dual Mass Flywheel has been de-veloped again and again. But the prosidures of de-velopment of D.M.F system didn't have had differe-nce from conventional clutch system's trial and err-or This paper presents the method for systematical design of D.M.F system with demensionless design variables of D.M.F system mass ratio between two flywheels λ. natual frequency rate of two flywheel s, ${\gamma}$and viscosity coefficient ζ. And experimental re-sults are used to prove these theoretical results.

  • PDF

Determination of Natural Frequencies of an Engine Crankshaft Using Finite Elements

  • Park, Myung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • 제18권4E호
    • /
    • pp.20-25
    • /
    • 1999
  • To get accurate natural frequencies of an engine crankshafts, finite element equations of motion are developed, taking real geometries of the shaft into account. For the crankshaft with wide crank webs, a specialized rotating web element is developed. This includes the effects of rotary inertia, gyroscopic moment, and shear. After the finite element equations are constructed, eigenvalues are extracted from the system equations to get natural frequencies, based on the Sturm sequence method which exploits the banded forms of the system matrices to reduce computations. The scheme developed can be used for the free vibration analysis of any type of spinning structures which include skew symmetric gyroscopic moment matrix in the system matrices. The results are compared with experimental data in order to confirm the study.

  • PDF

고속엔진축계용 점성 비틀림진동감쇠기의 성능해석 및 실험 (A Performance Analysis and Experiment of Viscous Torsional Vibration Damper for High Speed Engine Shaft System)

  • 양보석;정태영;김경득;김동조
    • 동력기계공학회지
    • /
    • 제1권1호
    • /
    • pp.98-105
    • /
    • 1997
  • In general, crankshafts which are used in internal combustion reciprocating engines are subjects to high torsional vibration. Therefore, a damper is often used to minimize the torsional vibration in reciprocating engines. In this paper, in order to investigate damping performance of viscous damper, the real effective viscosity and complex damping coefficient of silicone oil, and the effective inertia moment of inertia ring are calculated considering the relative motion between damper casing and inertia ring. Based on these results multi-cylinder shaft is modeled into equivalent 2-degree of freedom system and optimum condition is estimated by calculating the amplification factor of viscous damper. Also the test damper was manufactured according to the result of theoretical investigation, the performance and durability was ascertained through experimental examination.

  • PDF

NVH 성능향상을 위한 엔진마운트 최적설계에 관한 실험적 연구 (Experimental Study of Engine Mount Optimization to Improve NVH Quality)

  • 이준용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.330-337
    • /
    • 1996
  • The purpose of engine mount system is to reduce the noise and vibration caused by engine vibration, and to decouple the roll and bounce mode at idle. To reduce the noise and vibration level in a vehicle, it is important to make the design optimization of engine mount system that considered the moment of inertia and inclination of mount rubber. As a result, according to the definition of Torque Rool Axis (TRA), the vibration axis at idle must be on the TRA or very close to it. In this paper, we studied the effect of the design optimization of engine mount system. And we have a good NVH performance.

  • PDF

엔진-발전기 시스템 모델링 및 제어특성에 관한 실험적 연구 (An Experimental Study upon Modeling and Control of Coupled Engine and Generator System)

  • 송승호;정세종;오정훈;함윤영;최용각;이광희
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.163-169
    • /
    • 2003
  • Modeling of engine-generator system and its control responses are investigated using high performance generator controller. The nonlinear engine is modeled using mean torque production model based on experimental engine map. In case of diesel engine. the amount of injected fief is decided by engine controller depending on the APS(Acceleration Position Sensor) value. An electromechanical generator model contains electrical circuits and moment of inertia. The generator controller maximizes the performance of generator using decoupling and linearized current feedback control. The generator control system consists of 3-phase IGBT inverter and controller board based on 32 bit floating point DSP. Field oriented control algorithm with digital current feedback control at 10kHz sampling enabled high performance torque and speed control of induction machine. Not only the steady state but also the transient state responses can be evaluated through a batch test of the engine generator system. Developed engine and generator modeling and control can be utilized in various applications such as Series Hybrid Electric Vehicle(SHEV), engine-generator for emergency, and other hybrid generation systems.

단순 가스터빈 사이클 과도 성능해석 (Unsteady Performance Analysis of a Simple Shaft Gas Turbine Cycle)

  • 김수용
    • 연구논문집
    • /
    • 통권30호
    • /
    • pp.5-13
    • /
    • 2000
  • The computation scheme of simulating gas turbine transient behavior was developed. The basic principles of this scheme and main input data required are described. Calculation results are presented in terms of whole operating regime of the cycle. The influence of main initial parameters such as starting engine power, moment of inertia of the rotor, fuel supplying schedule etc. on performance characteristics of has turbine during transient operation is studied In addition, bleeding air influence on transient behavior was also considered For validation of the developed code, comparison of present calculation with that of measurement data of the experimental data for the range of operating period studied.

  • PDF