• Title/Summary/Keyword: Moment equation

Search Result 583, Processing Time 0.023 seconds

Analysis of Cyclic Adenosine Monophosphate (cAMP) Separation via RP-HPLC (reversed-phase high-performance liquid chromatography) by the Moment Method and the van Deemter Equation (역상 크로마토그래피에서 모멘트 방법과 van Deemter 식을 이용한 고리형 아데노신 일인산의 분리특성 연구)

  • Lee, Il Song;Ko, Kwan Young;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.723-729
    • /
    • 2015
  • The moment analysis of cyclic adenosine monophosphate (cAMP) was performed using chromatograms that were obtained with the pulse input method from an octadecyl silica (ODS) high-performance liquid chromatography (HPLC) column. The general rate (GR) model was employed to calculate the first absolute moment and the second central moment. Three important coefficients for moment analysis, which are molecular diffusivity ($D_m$), external mass transfer coefficient ($k_f$), and intra-particle diffusivity ($D_e$), were estimated by the Wilke-Chang equation, Wilson-Geankoplis equation, and comparing van Deemter equation to theoretical plate number equation, respectively. Experiments were conducted by various conditions of flow rates, methanol volume ratio of the mobile phase, and solute concentration. After the moment analysis, results were organized by van Deemter plots. Also van Deemter coefficients were compared each other to effect $H_{ax}$, $H_f$, and $H_d$ on height equivalent to a theoretical plate (HETP, $H_{total}$). The value of intraparticle diffusion ($H_d$) was the primary factor which makes for HETP whereas external mass transfer ($H_f$) was disregardable factor.

The Static Equivalent Radial Load under the Moment and Radial Force for the Deep Groove Ball Bearings (모멘트 하중을 고려한 깊은 홈 볼 베어링의 정등가 하중에 관한 연구)

  • 이재선;한동철
    • Tribology and Lubricants
    • /
    • v.14 no.3
    • /
    • pp.94-99
    • /
    • 1998
  • Generally not only the radial load but also the moment may be applied to the ball bearings for a shaft system. However it has been difficult to determine the static equivalent load because there is the radial static equivalent equation only for the axial and radial force on the bearings. In this paper, the same static equivalent radial load which makes the maximum contact force at the interface between the ball and groove as the applied radial force and moment generate is calculated under the condition that the radial force and the moment are applied to the bearings simultaneously. The relation between the static equivalent load and applied force is studied. Therefore the simple and effective equation for the static equivalent radial load of the radial load and moment is proposed for the deep groove ball bearings.

Application of the Method of Spatial Moment for Analysis the Multi-Region Model (다영역 모델의 해석을 위한 공간모멘트법의 적용)

  • 이덕주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.2
    • /
    • pp.78-85
    • /
    • 2000
  • The moment equations of the concentration distribution for the multi-region model are derived using the method of moment. The method originally devised by Aris is to obtain the concentration moments satisfying a given PDE (Partial Differential Equation. The method of moment is used to obtain the first five moments (0th to 4to) that satisfy the model PDE. Each moment of the concentration distribution for the model equation is plotted for the dimensionless time and gave similar results except the skewness and the kurtosis. The results of the analysis show the physical meaning of each moment. The comparisons with the number of regions or the global interaction coefficient give a possibility to determine the parameters of the multi-region model with the analytical concepts.

  • PDF

Importance of a rigorous evaluation of the cracking moment in RC beams and slabs

  • Lopes, A.V.;Lopes, S.M.R.
    • Computers and Concrete
    • /
    • v.9 no.4
    • /
    • pp.275-291
    • /
    • 2012
  • The service loads are often decisive in the design of concrete structures. The evaluation of the cracking moment, $M_{cr}$, is an important issue to predict the performance of the structure, such as, the deflections of the reinforced concrete beams and slabs. To neglect the steel bars of the section is a simplification that is normally used in the computation of the cracking moment. Such simplification leads to small errors in the value of this moment (typically less than 20%). However, these small errors can conduce to significant errors when the values of deflections need to be computed from $M_{cr}$. The article shows that an error of 10% on the evaluation of $M_{cr}$ can lead to errors over 100% in the deformation values. When the deformation of the structure is the decisive design parameter, the exact computing of the cracking moment is obviously very important. Such rigorous computing might lead to important savings in the cost of the structure. With this article the authors wish to draw the attention of the technical community to this fact. A simple equation to evaluate the cracking moment, $M_{cr}$, is proposed for a rectangular cross-section. This equation leads to cracking moments higher than those obtained by neglecting the reinforcement bars and is a simple rule that can be included in Eurocode 2. To verify the accuracy of the developed model, the results of the proposed equation was compared with a rigorous computational procedure. The proposed equation corresponds to a good agreement when compared with the previous approach and, therefore, this model can be used as a practical aid for calculating an accurate value of the cracking moment.

Stochastic stability control analysis of an inclined stay cable under random and periodic support motion excitations

  • Ying, Z.G.;Ni, Y.Q.;Duan, Y.F.
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.641-651
    • /
    • 2019
  • The stochastic stability control of the parameter-excited vibration of an inclined stay cable with multiple modes coupling under random and periodic combined support disturbances is studied by using the direct eigenvalue analysis approach based on the response moment stability, Floquet theorem, Fourier series and matrix eigenvalue analysis. The differential equation with time-varying parameters for the transverse vibration of the inclined cable with control under random and deterministic support disturbances is derived and converted into the randomly and deterministically parameter-excited multi-degree-of-freedom vibration equations. As the stochastic stability of the parameter-excited vibration is mainly determined by the characteristics of perturbation moment, the differential equation with only deterministic parameters for the perturbation second moment is derived based on the $It{\hat{o}}$ stochastic differential rule. The stochastically and deterministically parameter-excited vibration stability is then determined by the deterministic parameter-varying response moment stability. Based on the Floquet theorem, expanding the periodic parameters of the perturbation moment equation and the periodic component of the characteristic perturbation moment expression into the Fourier series yields the eigenvalue equation which determines the perturbation moment behavior. Thus the stochastic stability of the parameter-excited cable vibration under the random and periodic combined support disturbances is determined directly by the matrix eigenvalues. The direct eigenvalue analysis approach is applicable to the stochastic stability of the control cable with multiple modes coupling under various periodic and/or random support disturbances. Numerical results illustrate that the multiple cable modes need to be considered for the stochastic stability of the parameter-excited cable vibration under the random and periodic support disturbances, and the increase of the control damping rather than control stiffness can greatly enhance the stochastic stability of the parameter-excited cable vibration including the frequency width increase of the periodic disturbance and the critical value increase of the random disturbance amplitude.

Effect of Longitudinal Reinforcement Ratios and Axial Deformation on Frame Analysis in RC Columns (기둥의 철근비와 축변형량이 보 해석에 미치는 영향 연구)

  • 장원석;민창식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.477-482
    • /
    • 2001
  • This paper is to study the effect of longitudinal reinforcement ratios and axial deformation on the frame analysis in reinforced concrete(RC) columns and to investigate the effect of confined concrete core, the length-width ratio and longitudinal steel ratios on frame analysis in Concrete-Filled steel Tubular(CFT) columns. An equation if derived to evaluate the modulus of elasticity for core concrete. The 34 reference data have been collected for the purpose and are processed by the mean of a multiple regression analysis technique. The equation and longitudinal reinforcement ratios was applied to RC columns for structural analysis. Then, the difference of beam moment was identified. In general, the results of analysis was indicated reasonable differences in beam moment, in case of longitudinal reinforcement ratios applied to RC columns when compared with the plain concrete columns. In CFT columns the equation was also applied in order to the effect of confined concrete core on structural analysis. Beam moment was increased as volumetric ratio of lateral steel was decreased. The effect of longitudinal steel ratios was investigated in CFT columns and was confirmed beam moment variety. The result was appeared reasonable difference in beam moment as longitudinal steel was increased.

  • PDF

Equivalent Plastic Hinge Length Model for Flexure-Governed RC Shear Walls (휨 항복형 철근콘크리트 전단벽의 등가소성힌지길이 모델)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.1-8
    • /
    • 2014
  • The present study proposes a simple equation to straightforwardly determine the potential plastic hinge length in boundary element of reinforced concrete shear walls. From the idealized curvature distribution along the shear wall length, a basic formula was derived as a function of yielding moment, maximum moment, and additional moment owing to diagonal tensile crack. Yielding moment and maximum moment capacities of shear wall were calculated on the basis of compatability of strain and equilibrium equation of internal forces. The development of a diagonal tensile crack at web was examined from the shear transfer capacity of concrete specified in ACI 318-11 provision and then the additional moment was calculated using the truss mechanism along the crack proposed by Park and Paulay. The moment capacities were simplified from an extensive parametric study; as a result, the equivalent plastic hinge length of shear walls could be formulated using indices of longitudinal tensile reinforcement at the boundary element, vertical reinforcement at web, and applied axial load. The proposed equation predicted accurately the measured plastic hinge length, providing that the mean and standard deviation of ratios between predictions and experiments are 1.019 and 0.102, respectively.

On the dynamic instability analysis of mechanical face seals (기계평면시일의 동적 불안정성에 관한 연구)

  • 김청균;서태석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1509-1514
    • /
    • 1990
  • To investigate the seal dynamic instability for a misaligned and coned mechanical face seal, the finite difference approximation was employed to solve the modified Reynolds equation for an incompressible fluid and temperature dependent viscosity. Using the solution, the results for axial force, transverse moment, restoring moment, and ratio of the transverse moment and the restoring moment are calculated for the whole range from zero to full angular misalignment. The results indicate that the transverse moment due to the angular misalignment and coning terms affects considerably the dynamic instability of face seals. It is shown that the simplified treatment of Reynolds equation using the narrow seal approximation overestimate the ratio of the transverse moment to the restoring moment especially at touch.

A Mean of Structural equation modeling on AMOS Software (AMOS 소프트웨어에서 구현되는 구조방정식 모형과 의미)

  • Kim, Kyung-Tae
    • Proceedings of the Korean Association for Survey Research Conference
    • /
    • 2007.11a
    • /
    • pp.55-65
    • /
    • 2007
  • In this research, it will be examined on mathematical model of AMOS software program that ues for Covariance Structure Analysis. if we have not understood to mathematical model of Covariance Structure, we fail to understand Structural equation modeling. Similarly If We were not understand to mathematical model of AMOS Software, we do not use Software adequately. Therefore we examine two sorts of Software that be designed for Structural equation modeling or Covariance Structure Analysis. In this research, We will focus on 8 assumption of Structural equation modeling and compare AMOS(Analysis of MOment Structure) program with LISREL(Linear Structure RELation) program. We found that A Program of AMOS Software have materialized with RAM(Reticular Action Model).

  • PDF

An Experimental Study on the Stochastic Control of a Flexible Structural System (유연한 구조물의 확률론적 제어에 대한 실험적 연구)

  • Kim, Dae-Jung;Heo, Hoon
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.502-508
    • /
    • 1999
  • Newly developed control methodology applied to dynamic system under random disturbance is investigated and its performance is verified experimentall. Flexible cantilever beam sticked with piezofilm sensor and piezoceramic actuator is modelled in physical domain. Dynamic moment equation for the system is derived via Ito's stochastic differential equation and F-P-K equation. Also system's characteristics in stochastic domain is analyzed simultaneously. LQG controller is designed and used in physical and stochastic domain as wall. It is shown experimentally that randomly excited beam on the base is controlled effectively by designed LQG controller in physical domain. By comparing the result with that of LQG controller designed in stochastic domain, it is shown that new control method, what we called $\ulcorner$Heo-stochastic controller design technique$\lrcorner$, has better performance than conventional ones as a controller.

  • PDF