• Title/Summary/Keyword: Molten carbonate

Search Result 228, Processing Time 0.032 seconds

Optimization of Bending Process for the Fabrication of Ultra Precision Metallic Bipolar Plate for Molten Carbonate Fuel Cell (용융탄산염 연료전지용 초정밀 금속분리판 제작을 위한 굽힘 공정 최적화)

  • Lee, C.H.;Ryu, S.M.;Yang, D.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.345-348
    • /
    • 2008
  • Metallic bipolar plate for molten carbonate fuel cell(MCFC) is composed of the shielded slot plate and the center plate. Among these, the center plate plays an important role in gas sealing. Therefore, manufacturing of the center plate is considered one of the key issues in MCFC. The center plate is manufactured by bending process. In bending process, springback and recoiling are two main problems. The aim of this article is to optimize the bending process of the center plate regardless of springback and recoiling. To achieve this goal, we proposed the punch having step to reduce springback and recoiling. Using finite element method and $L_9$ orthogonal array, we determined the main factors in the center plate bending process. And we found the optimal bending process condition for the MCFC center plate.

  • PDF

The Enhanced Physico-Chemical and Electrochemical Properties for Surface Modified NiO Cathode for Molten Carbonate Fuel Cells (MCFCs)

  • Choi, Hee Seon;Kim, Keon;Yi, Cheol-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1305-1311
    • /
    • 2014
  • The nickel oxide, the most widely used cathode material for the molten carbonate fuel cell (MCFC), has several disadvantages including NiO dissolution, poor mechanical strength, and corrosion phenomena during MCFC operation. The surface modification of NiO with lanthanum maintains the advantages, such as performance and stability, and suppresses the disadvantages of NiO cathode because the modification results in the formation of $LaNiO_3$ phase which has high conductivity, stability, and catalytic activity. As a result, La-modified NiO cathode shows low NiO dissolution, high degree of lithiation, and mechanical strength, and high cell performance and catalytic activity in comparison with the pristine NiO. These enhanced physico-chemical and electrochemical properties and the durability in marine environment allow MCFC to marine application as a auxiliary propulsion system.

The Ejector Design and Test for 5kW Molten Carbonate Fuel Cell (5kW 용융탄산염 연료전지 이젝터 설계 및 시험)

  • Kim, Beom-Joo;Kim, Do-Hyung;Lee, Jung-Hyun;Jung, Sang-Chun;Lee, Sung-Yoon;Kang, Seung-Won;Lim, Hee-Chun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.53-56
    • /
    • 2008
  • An ejector is a fluid machinery to be utilized for mixing fluids, maintaining vacuum, and transporting them. The Ejector is applied for a variety of industrial fields such as refrigerators and power plants. It is adopted to recycle anode off gas safely in 5kW Molten Carbonate Fuel Cell system of KEPRI(Korea Electric Power Research Institute). The ejector is placed at mixing point between the anode off gas and the cathode off gas or the fresh air. In this study, the entrainment ratio is measured according to the diametrical ratio of nozzle to throat. In addition, the performance curve of the ejector and the differential pressure in diffuser is observed.

  • PDF

Electrode Fabrication of Molten Carbonate Fuel Cell Anode (용융탄산염형 연료전지의 anode 전극 제작)

  • Kim, G.Y.;Moon, S.I.;Yun, M.S.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.255-258
    • /
    • 1991
  • MCFC are expected as an electric and thermal power source of the urban cogenerating system because MCFC have higher electric power efficiency and better thermal power quality. However, the MCFC which use strorgly corrosive molten Carbonate at $650^{\circ}C$ have many problems. Material issues with the molten carbonate fuel cell in clude anode creep, conthode dissolution and bipolar plate corrosion. The objectives of this study are to examied fabrication process and characteristics of anode electrode.

  • PDF

Operating Characteristics of MCFC System on the Diversification of Fuel (연료 다변화에 따른 용융 탄산염 연료전지 시스템 운전 특성)

  • Im, Seokyeon;Sung, Yongwook;Han, Jaeyoung;Yu, Sangseok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.156-163
    • /
    • 2015
  • The fuel cells have been investigated in the applications of marine as the high efficient and eco-friendly power generating systems. In this study, modeling of IR Type molten carbonate fuel cell (Internal Reforming Type molten carbonate fuel cell) has been developed to analyze the feasibility of thermal energy utilization. The model is developed under Aspen plus and used for the study of system performances over regarding fuel types. The simulation results show that the efficiency of MCFC system based on NG fuel is the highest. Also, it is also verified that the steam reforming is suitable as pre-reforming for diesel fuel.

An Analysis on the Performance and the Heat Transfer of Molten Carbonate Fuel Cell Stack (용융탄산염 연료 전지 스택의 성능 및 열전달 해석)

  • Koo, J.Y.;Suh, J.C.;Kim, Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.2
    • /
    • pp.120-129
    • /
    • 1994
  • A numerical investigation has been carried out for the electrochemical reaction, mass and heat transfer characteristics of the Molten Carbonate Fuel Cell(MCFC) stack. The effects of cooling air channel and water gas shift reaction were taken into account. The current density distribution of electrodes, the molecular fractions of reactant gasses and three dimensional temperature distribution can be calculated and shown by several lines of equivalent values. The results have been compared with the existing ones, and reasonable agreement has been obtained. To examine the influence of changing parameters, such as the composition of reactant gases, the target average current density, the utilization of reactant gases, the cooling air inlet temperature and flow rates, the computer simulation has been done. The analysis method and computer program developed in this study will be greatly helpful to design and verify the optimum operating condition of MCFC stack.

  • PDF

FEM Analysis of spring back in bending process of center plate for molten carbonate fuel cell (용융탄산염 연료전지용 금속분리판 굽힘 공정의 유한요소 해석을 통한 스프링백 분석)

  • Lee, C.H.;Ryu, S.M.;Yang, D.Y.;Kim, Y.J.;Kang, D.W.;Chang, I.G.;Lee, T.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.220-223
    • /
    • 2009
  • Metallic bipolar plate for molten carbonate fuel cell(MCFC) is composed of the shielded slot plate and the center plate. Among these, the center plate plays an important role in gas sealing. Therefore, manufacturing of the center plate is considered one of the key issues in MCFC. The center plate is manufactured by bending process. In bending process, springback and recoiling are two main problems. By using the modified punch shape with 'step', springback and recoil are reduced. The aim of this article is to find the effect of modified punch shape. So, the bending stress along thickness direction and material direction were investigated using FEM.

  • PDF

Constitution and Operation of the 25 kW Molten Carbonate Fuel Cell Power Generation System for Power Utility (25 kW급 전력사업용 MCFC 발전시스템 구성 및 운전평가)

  • Lim, Hee-Chun;Ahn, Kyo-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.687-689
    • /
    • 2000
  • Molten Carbonate Fuel Cell (MCFC) with high electrical efficiency and low environmental effect has been developed for the commercial application of power generation fields. Recently we have built a 25 kW molten carbonate fuel cell power generation system and tested it. The MCFC system is composed of diverse peripheral units such as reformer, pre-heater, water purifier. electrical loader, gas supplier, and recycling systems. The stack itself was made of 40 cells of $6.000 cm^2$ area each. The stack showed an output of 28.6 kW power and a reliable performance at atmospheric operation. while in pressurized operation the stack showed an output 25.6 kW lower than the atmospheric operation. The reason of lower performance of pressurized operation was caused from a gas cross over shown in few cells in the stack.

  • PDF

Analysis of Cell Performance with Varied Electrolyte Species and Amounts in a Molten Carbonate Fuel Cell

  • Lee, Ki-Jeong;Kim, Yu-Jeong;Koomson, Samuel;Lee, Choong-Gon
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.141-148
    • /
    • 2018
  • This study evaluated the performance characteristics of varied electrolyte species and amounts in a molten carbonate fuel cell (MCFC). Coin-type MCFCs were used at the condition of $650^{\circ}C$ and 1 atm. In order to measure the effects of varied electrolyte species and amounts, electrolytes of $(Li+K)_2CO_3$ and $(Li+Na)_2CO_3$ were selected and the amounts of 1.5 g, 2.0 g, 3.0 g, and 4.0 g were used. Insignificant performance differences were observed in the cell using different electrolytes, but the cell performance was sensitive to the amount of the electrolyte used. The pore-filling ratio (PFR), a ratio of pore filling in the components by the liquid carbonate electrolytes, was used to determine the optimum performance range. Consequently, 77% PFR demonstrated the optimum performance for both electrolytes. Thus, the MCFC had a permissible but narrow optimum performance range. The remaining amounts of electrolyte in the cells were determined using the weight reduction ratio (WRR) method after several hours of cell operation. The WRR used the relationship between the initial loaded amount of electrolyte and weight reduction of components in 10 wt% acetic acid. The relationships were linear and identical between the two electrolyte species.

Effect of Reinforcing Materials on Properties of Molten Carbonate Fuel Cell Matrices

  • Moon, Young-Joon;Lee, Dokyol
    • The Korean Journal of Ceramics
    • /
    • v.2 no.3
    • /
    • pp.142-146
    • /
    • 1996
  • The molten carbonate fuel cell matrices, which are usually made of high surface, fine particle size ${\gamma}-LiAlO_2$ are reinforced with coarse particles of the same material and alumina fibers. An the effects of reinforcing materials on pore characteristics, sintering properties and mechanical properties of the matrices are examined.Among the matrices examined, the highest mechanical reinforcement has been achieved in the one containing 10 wt.% coarse particles and 20 wt.% alumina fibers.

  • PDF