• Title/Summary/Keyword: Molecule Structure

Search Result 574, Processing Time 0.031 seconds

Chemistry of Tea Polyphenol in the Processing Method (차의 가공방법에 따른 Polyphenol 화학)

  • 안봉전
    • Food Science and Preservation
    • /
    • v.5 no.1
    • /
    • pp.97-104
    • /
    • 1998
  • The chemical structure of low molecule polyphenol of tea was found as explained. Structure decision of pioanthocyanidin was possible to measure 1,700 molecule, hexamer by chemical basic of polyphenol. At present, structure of high molecule than of that can't be suspected and it is concemed that strong astrigent ccnpound of tea is polymer proanthocyanidin. Mush researches was required in structure decision and isolation of high molecule polyphenol complex. Structure decision will develope at the natural products in the furture.

  • PDF

Interaction of acetone molecule on Si(001) surface: A theoretical study (Si(001) 표면과 acetone 분자의 상호작용에 대한 이론적 연구)

  • Baek, Seung-Bin;Kim, Dae-Hee;Kim, Yeong-Cheol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.3
    • /
    • pp.35-39
    • /
    • 2008
  • We study the interaction of acetone molecule $[(CH_3)_2CO]$ on Si(001) surface using density functional theory. An acetone molecule is adsorbed on a Si atom of the Si dimer of the Si(001) surface. The adsorption of the acetone molecule on the Si atom at lower height between the two Si atoms of the dimer is more favorable than that on the Si atoms at upper height. Then we calculate an energy variation of dissociation and four-membered ring structures of the acetone molecule adsorbed on the Si surface. Total energy difference between the two structures is about 0.05 eV, indicating that the two structures are almost equally stable. Energy barrier exists when a hydrogen atom is dissociated and adsorbed on the other Si atom of the dimer, while energy barrier does not exist when the adsorbed acetone molecule changes to four-membered ring structure, except for the rotation of the acetone molecule along z-direction. Therefore, four-membered ring structure is kinetically more favorable than the dissociation structure when the acetone molecule is adsorbed on the Si(001) surface.

  • PDF

Determination of energetically preferable Au-S contact atomic structure in stretched single-molecule junctions

  • Ko, Kwan Ho
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.409-411
    • /
    • 2014
  • Based on the first-principles computations, the nature of the microscopic geometry of the molecule-electrode contacts was addressed. The single-molecule junction was prepared by connecting hexanediothiolate (HDT) to Au(111) electrodes via one, two, and three Au adatoms having coordination number of one (CN1), two (CN2), and, three (CN3), respectively. The contact atomic structure and energy of the stretched Au-HDT-Au junction was observed. The analysis revealed that the contact geometry with lowest coordination number (CN1) is energetically more stable than CN2 and CN3.

  • PDF

Reconstruction of α-helices in a Protein Molecule (단백질 분자 내 α-헬릭스의 재구성)

  • Kang, Beom Sik;Kim, Ku-Jin;Seo, U Deok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.4
    • /
    • pp.163-168
    • /
    • 2014
  • In a protein molecule, ${\alpha}$-helices are important for protein structure, function, and binding to other proteins, so the analysis on the structure of helices has been researched. Since an interaction between two helices is evaluated based on their axes, massive errors in protein structure analysis would be caused if a curved or kinked long ${\alpha}$-helix is considered as a linear one. In this paper, we present an algorithm to reconstruct ${\alpha}$-helices in a protein molecule as a sequence of straight helices under given threshold.

The Crystal Structure of Naproxen Sodium, ($C_{14}H_{13}O_3Na$), A Non-steroidal Antiinflammatory Agent

  • Kim, Yang-Bae;Park, Il-Yeong;Lah, Woon-Ryong
    • Archives of Pharmacal Research
    • /
    • v.13 no.2
    • /
    • pp.166-173
    • /
    • 1990
  • The structure of the anti-inflammatory agent, naproxen sodium was determined by single crystal X-ray diffraction analysis. Crystal of the compound, which was recrystallized from methanol solution, is nomoclinic, space group $P2_1$ with a = 21. 177(6), b = 5.785(2), c = 5.443(2) $\AA, \beta$ = 91.41(3)$\{\circ}$ and Z = 2. The calculated density is 1.346; the observed value is nements based on 1093 reflections ($F\geq3\sigma$(F)) gave the final R value of 0.043. There are of one water per one compound molecule in the crystal. The carboxyl group of the molecule is nearly perpendicular to the naphthalene ring. The molecules are arranged along with the screw axis, and stabilized by five 0...Na type interactions. The molecule retains nearly same dimensions and similar conformation compared to its parent compound, naproxen, except for the torsion angles around C(5)-C(11) bond.

  • PDF

Studies on the Crystal Structure of Benzidine Perchlorate by X-ray Diffraction method (II) Crystal Structure Analysis (X-線 廻折法을 利用한 벤지딘過鹽素酸鹽의 結晶構造에 關한 硏究 (II)結晶構造의 解析)

  • Koo, Chung-Hoe;Shin, Hyun-So;Kang, Man-Hyong
    • Journal of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.123-126
    • /
    • 1970
  • The approximate crystal structure of benzidine monoperchlorate has been determined by single crystal X-Ray diffraction technique and patterson method. As the molecule has a center of symmetry in it and location of perchlorate ion is symmetrically on the mirror plane in the unit cell, perchlorate ion is forming hydrogen bond with two -$NH_2$ groups in the different molecule. Thus, one molecule of benzidine and perchloric acid combines 1:1 by mole ratio.

  • PDF

Vibrational Analysis and Intermolecular Hydrogen Bonding of Azodicarbonamide in the Pentamer Cluster

  • Lee, Choong-Keun;Park, Sun-Kyung;Min, Kyung-Chul;Kim, Yun-Soo;Lee, Nam-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1951-1959
    • /
    • 2008
  • Pentamer cluster of azodicarbonamide (ADA) based on the crystalline structure was investigated for the equilibrium structure, the stabilization energies, and the vibrational properties at various levels of the density functional theory. Stretching force constants of N${\cdot}{\cdot}{\cdot}$H or O${\cdot}{\cdot}{\cdot}$H, and angle-bending force constants of N-H${\cdot}{\cdot}{\cdot}$N or N-H${\cdot}{\cdot}{\cdot}$O for intermolecular hydrogen bonds in the pentamer cluster were obtained in 0.2-0.5 mdyn/$\AA$ and 1.6-2.0 mdyn$\AA$, respectively. The geometry of central ADA molecule fully hydrogen bonded with other four molecules shows good coincidence to the crystalline structure except the bond distances of N-H. Calculated Raman and infrared spectra of central ADA molecule in cluster represent well the experimental spectra of ADA obtained in the solid state compared to a single molecule. Detailed structural and vibrational properties of central ADA molecule in the pentamer cluster are presented.

Continuous Formative Beauty of Geometrical Shapes (기하형태의 연속적인 조형성 -분자구조를 중심으로-)

  • Kim, Min-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.10
    • /
    • pp.172-179
    • /
    • 2010
  • The study on works motivated from interest in the nature of matters and inherent visual-perceptual structure in them aims at expressing formative continuity of the connections of three dimensions of simple geometrical shapes such as circles and lines, which are characteristics of shape of molecules. With such a purpose, this study examined the geometrical shapes in modern arts and structural connection and symbolism of molecule structure, and based on such considerations, it expressed successive formative beauty which comes from repetitive connection between units by creating stereogram of simple geometrical shapes of molecule structure. The types of works include a method of connecting the units of molecule models and molecules seen in electron microscope with lines as a parameter and connecting units directly, which are used to express body accessory and metallic sculptures. Consequently, it attempted formation occurring spatial composition of continuity of division and duplication through direct connection between units and circular continuity coming from connection of simple geometrical shapes of molecule images such as spheres and curves transformed into stereogram.

Single-Molecule Methods for Investigating the Double-Stranded DNA Bendability

  • Yeou, Sanghun;Lee, Nam Ki
    • Molecules and Cells
    • /
    • v.45 no.1
    • /
    • pp.33-40
    • /
    • 2022
  • The various DNA-protein interactions associated with the expression of genetic information involve double-stranded DNA (dsDNA) bending. Due to the importance of the formation of the dsDNA bending structure, dsDNA bending properties have long been investigated in the biophysics field. Conventionally, DNA bendability is characterized by innate averaging data from bulk experiments. The advent of single-molecule methods, such as atomic force microscopy, optical and magnetic tweezers, tethered particle motion, and single-molecule fluorescence resonance energy transfer measurement, has provided valuable tools to investigate not only the static structures but also the dynamic properties of bent dsDNA. Here, we reviewed the single-molecule methods that have been used for investigating dsDNA bendability and new findings related to dsDNA bending. Single-molecule approaches are promising tools for revealing the unknown properties of dsDNA related to its bending, particularly in cells.

Structural and Spectral Characterization of a Chromium(III) Picolinate Complex: Introducing a New Redox Reaction

  • Hakimi, Mohammad
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.6
    • /
    • pp.721-725
    • /
    • 2013
  • Reaction between 2-pyridinecarboxylic acid (Hpic) and $K_3[Cr(O_2)_4]$ give complex $[Cr(pic)_3].H_2O$ (1) which is characterized by elemental analysis and spectroscopic methods (FT-IR, Raman) and X-ray crystallography. In the crystal structure of 1, chromium atom with coordinated by three nitrogen and three oxygen atoms has a distorted octahedral geometry. Also a water molecule is incorporated in crystal network. Each water molecule acts as hydrogen bond bridging and connects two adjacent complexes by two $O-H{\cdots}O$ hydrogen bonds.