DOI QR코드

DOI QR Code

Reconstruction of α-helices in a Protein Molecule

단백질 분자 내 α-헬릭스의 재구성

  • Received : 2013.12.30
  • Accepted : 2014.03.06
  • Published : 2014.04.30

Abstract

In a protein molecule, ${\alpha}$-helices are important for protein structure, function, and binding to other proteins, so the analysis on the structure of helices has been researched. Since an interaction between two helices is evaluated based on their axes, massive errors in protein structure analysis would be caused if a curved or kinked long ${\alpha}$-helix is considered as a linear one. In this paper, we present an algorithm to reconstruct ${\alpha}$-helices in a protein molecule as a sequence of straight helices under given threshold.

단백질 분자 내에서 ${\alpha}$-헬릭스는 단백질의 구조나 기능, 그리고 다른 단백질과의 결합, 활성 조절 등에 있어 중요한 역할을 하며, 이에 따라 헬릭스에 대한 구조적인 분석이 연구되어 왔다. ${\alpha}$-헬릭스는 그 중심축을 기준으로 다른 ${\alpha}$-헬릭스와의 상호위치를 평가하기 때문에 길게 휘어지거나 꺾인 ${\alpha}$-헬릭스들을 한 개의 헬릭스로 해석할 경우에는 단백질의 구조 분석에 있어서 상당한 오차가 발생할 수 있다. 본 논문에서는 PDB 파일 내에 표시된 단백질 분자의 ${\alpha}$-헬릭스를 주어진 오차 범위 내에서 여러 개의 곧은 형태의 헬릭스로 재구성하는 알고리즘을 제안한다.

Keywords

References

  1. D. Barlow and J. M. Thornton. "Helix geometry in proteins," J. Mol. Biol., Vol.201, pp.601-619, 1988. https://doi.org/10.1016/0022-2836(88)90641-9
  2. S. Kumar S. and M. Bansal, "Geometrical and sequence characteristics of $\alpha$-helices in globular proteins," Biophysical Journal, Vol.75, pp.1935-1944, 1998. https://doi.org/10.1016/S0006-3495(98)77634-9
  3. T. L. Blundell, D. Barlow, N. Barkakoti, and J. M. Thornton., "Solvent induces distortions and curvature of $\alpha$-helices," Nature, Vol.306, pp.281-283, 1983. https://doi.org/10.1038/306281a0
  4. P. Chakarabarti, M. Bernard, and D. C. Rees. "Peptide bond distortion and curvature of a helices," Biopolymers, Vol.25, pp.108-1093, 1986.
  5. S. Kumar, and M. Bansal. "Structure and sequences characteristics of long a helices in globular proteins," Biophys. J., Vol.71, pp.1574-1586, 1996. https://doi.org/10.1016/S0006-3495(96)79360-8
  6. C. Chothia, M. Levitt, and D. Richardson, "Helix to helix packing in proteins," J. Mol. Biol., Vol.145, pp.215-250, 1981. https://doi.org/10.1016/0022-2836(81)90341-7
  7. S. A. Tatulian, "Determination of helix orientations in proteins," Comp. Biol. Chem., Vol.32, pp.370-374, 2008. https://doi.org/10.1016/j.compbiolchem.2008.05.001
  8. B. Visiers, B. Braunheim, H. Weinstein, "Prokink: a protocol for numerical evaluation of helix distortions by proline," Protein Engineering, Vol.13, No.9, pp.603-606, 2000. https://doi.org/10.1093/protein/13.9.603
  9. M. Bansal, S. Kumar, and R. Velavan, "HELANAL: A program to characterize helix geometry in protein," J. Biomol. Struc. Dynamics, Vol.17, pp.811-819, 2000. https://doi.org/10.1080/07391102.2000.10506570
  10. J. Deville, J. Rey, and M. Chabbert, "Comprehensive analysis of the helix-X-helix motif in soluble proteins," Proteins: structure, funtion and bioinformatics, Vol.72, pp.115-135, 2008. https://doi.org/10.1002/prot.21879
  11. Y. H. Huang and C. M. Chen. "Statistical analyses and computational prediction of helical kinks in membrane proteins," J Compt Aided Mol Des, Vol.26, pp.1171-1185, 2012. https://doi.org/10.1007/s10822-012-9607-5
  12. D. Albanesi, M. Martin, F. Trajtenberg, M. C. Mansilla, A. Haous, P. M. Alzari, D. de Mendoza, A. and Buschiazzo. "Structural plasticity and catalysis regulation of a thermosensor histidine kinase", Proc. Natl. Acad. Sci. USA, Vol.106, pp.16185-16190, 2009. https://doi.org/10.1073/pnas.0906699106

Cited by

  1. Development of GIS based Air Pollution Information System, using a Context Awareness Model vol.16, pp.6, 2015, https://doi.org/10.5762/KAIS.2015.16.6.4228