Browse > Article
http://dx.doi.org/10.5012/bkcs.2008.29.10.1951

Vibrational Analysis and Intermolecular Hydrogen Bonding of Azodicarbonamide in the Pentamer Cluster  

Lee, Choong-Keun (Department of Chemistry, Chungbuk National University)
Park, Sun-Kyung (Department of Chemistry, Chungbuk National University)
Min, Kyung-Chul (Department of Chemistry, Chungbuk National University)
Kim, Yun-Soo (Department of Advanced Materials Chemistry, Korea University)
Lee, Nam-Soo (Department of Chemistry, Chungbuk National University)
Publication Information
Abstract
Pentamer cluster of azodicarbonamide (ADA) based on the crystalline structure was investigated for the equilibrium structure, the stabilization energies, and the vibrational properties at various levels of the density functional theory. Stretching force constants of N${\cdot}{\cdot}{\cdot}$H or O${\cdot}{\cdot}{\cdot}$H, and angle-bending force constants of N-H${\cdot}{\cdot}{\cdot}$N or N-H${\cdot}{\cdot}{\cdot}$O for intermolecular hydrogen bonds in the pentamer cluster were obtained in 0.2-0.5 mdyn/$\AA$ and 1.6-2.0 mdyn$\AA$, respectively. The geometry of central ADA molecule fully hydrogen bonded with other four molecules shows good coincidence to the crystalline structure except the bond distances of N-H. Calculated Raman and infrared spectra of central ADA molecule in cluster represent well the experimental spectra of ADA obtained in the solid state compared to a single molecule. Detailed structural and vibrational properties of central ADA molecule in the pentamer cluster are presented.
Keywords
Vibrational analysis; Azodicarbonamide; Pentamer; Intermolecular hydrogen bonding
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Torii, H.; Tasumi, T.; Kanazawa, T.; Tasumi, M. J. Phys. Chem. B 1998, 102, 309   DOI   ScienceOn
2 Ziegler, T. In Density Functional Methods in Chemistry and Materials Science; Springborg, M., Ed.; John Wiley and Sons: U.K., 1997; p 69
3 Tam, C. N.; Bour, P.; Eckert, J.; Trouw, F. R. J. Phys. Chem. A 1997, 101, 5877   DOI   ScienceOn
4 Furer, V. L. J. Mol. Struct. 1998, 449, 53   DOI   ScienceOn
5 Cromer, D. T.; Larson, A. C.; Stewart, R. F. J. Chem. Phys. 1976, 65, 336   DOI
6 Florian, J.; Johnson, B. G. J. Phys. Chem. 1994, 98, 3681   DOI   ScienceOn
7 Florian, J.; Leszczynski, J; Johnson, B. G. J. Mol. Struct. 1995, 349, 421   DOI   ScienceOn
8 Cromer, D. T.; Larson, A. C. J. Chem. Phys. 1974, 60, 176   DOI
9 Bryden, J. H. Acta Cryst. 1961, 14, 61   DOI
10 Legon, A. C.; Rego, C. A. J. Mol. Struct. 1988, 189, 137   DOI   ScienceOn
11 Moore, W. H.; Krimm, S. Proc. Nat. Acad. Sci. USA 1975, 72, 4933   DOI   ScienceOn
12 Kearley, G. J.; Fillaux, F.; Baron, M.-H.; Bennington, S.; Tomkinson, J. Science 1994, 264, 1285   DOI   ScienceOn
13 Han, Y.-K.; Kim, J. C.; Jung, J.; Yu, U. Bull. Korean Chem. Soc. 2008, 29, 305   DOI   ScienceOn
14 Lutz, H. D.; Suchanek, E. Spectrochim. Acta A 2000, 56, 2707   DOI   ScienceOn
15 Xiang, K.; Pandey, R.; Recio, J. M.; Francisco, E.; Newsam, J. M. J. Phys. Chem. A 2000, 104, 990   DOI   ScienceOn
16 Chae, J.-B.; Yu, S.-C.; Lee, Y. Bull. Korean Chem. Soc. 2007, 28, 193   DOI   ScienceOn
17 Karpfen, A. J. Phys. Chem. 1996, 100, 13474   DOI   ScienceOn
18 Inoue, K.; Takeuchi, H.; Konaka, S. J. Phys. Chem. A 2001, 105, 6711   DOI   ScienceOn
19 Lee, S.-H.; Krimm, S. Biopolymer 1998, 48, 283
20 Biswas, N.; Umapathy, S. J. Phys. Chem. A 1997, 101, 5555   DOI   ScienceOn
21 Durig, J. R.; Yu, Z.; Guirgis, G. A. J. Phys. Chem. A 2000, 104, 741   DOI   ScienceOn
22 Park, S. K.; Lee, N.-S.; Lee, S.-H. Bull. Korean Chem. Soc. 2000, 21, 959
23 Lee, S.-H.; Palmo, K.; Krimm, S. J. Comput. Chem. 1999, 20, 1067   DOI   ScienceOn
24 Rauhut, G.; Pulay, P. J. Phys. Chem. 1995, 99, 3093   DOI   ScienceOn
25 Hartmann, M.; Radom, L. J. Phys. Chem. A 2000, 104, 968   DOI   ScienceOn
26 Macoas, E. M. S.; Fausto, R.; Lundell, J.; Pettersson, M.; Khriachtchev, L.; Rasanen, M. J. Phys. Chem. A 2001, 105, 3922   DOI   ScienceOn
27 Kovacs, A.; Izvekov, V.; Keresztury, G.; Pongor, G. Chem. Phys. 1998, 238, 231   DOI   ScienceOn
28 Tsuji, T.; Takashima, H.; Takeuchi, H.; Egawa, T.; Konaka, S. J. Phys. Chem. A 2001, 105, 9347   DOI   ScienceOn
29 Topol, I. A.; Nemukhin, A. V.; Dobrogorskaya, Y. I.; Burt, S. K. J. Phys. Chem. B 2001, 105, 11341   DOI   ScienceOn
30 Rabold, A.; Zundel, G. J. Phys. Chem. 1995, 99, 12158   DOI   ScienceOn
31 Choi, K.-S.; Kim, H.-Y.; Kim, S.-J. Bull. Korean Chem. Soc. 2005, 26, 119   DOI   ScienceOn
32 Schaal, H.; Haber, T.; Suhm, M. A. J. Phys. Chem. A 2000, 104, 265   DOI   ScienceOn
33 Sorescu, D. C.; Boatz, J. A.; Yhompson, D. L. J. Phys. Chem. A 2001, 105, 5010   DOI   ScienceOn
34 Coussan, S.; Bach, A.; Leutwyler, S. J. Phys. Chem. A 2000, 104, 9864   DOI   ScienceOn
35 Torii, H.; Tasumi, M. J. Phys. Chem. B 1998, 102, 315   DOI   ScienceOn
36 Torii, H.; Tasumi, M. Int. J. Quantum Chem. 1998, 70, 241   DOI   ScienceOn
37 Aamouche, A.; Ghomi, M.; Coulombeau, C.; Grajcar, L.; Baron, M. H.; Jovic, H.; Berthier, G. J. Phys. Chem. A 1997, 101, 1808   DOI   ScienceOn
38 Spieser, S. A. H.; Leeflang, B. R.; Kroon-Batenburg, L. M. J.; Kroon, J. J. Phys. Chem. A 2000, 104, 7333   DOI   ScienceOn
39 Nishi, N.; Nakabayashi, T.; Kosugi, K. J. Phys. Chem. A 1999, 103, 10851   DOI   ScienceOn