• Title/Summary/Keyword: Molecular weight degradation

Search Result 251, Processing Time 0.03 seconds

Decomposition Characteristics of Raw Rubber and Tire by Thermal Degradation Process (열분해 공정을 이용한 원료고무와 타이어의 분해 특성)

  • Kim, Won-Il;Kim, Hyung-Jin;Jung, Soo-Kyung;Hong, In-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1052-1060
    • /
    • 1999
  • Tire and raw material of tire, i.e., SBR were degraded using pyrolysis process. The yield of pyrolytic oil was increased and that of gas was decreased with increase of operating temperature in pyrolysis. And the yield of pyrolytic oil was increased and that of gas and char was decreased with increase of heating rate. The maximum oil yields of SBR and tire were 86% and 55% each at $700^{\circ}C$ with a heating rate of $20^{\circ}C/min$. The number average molecular weight ranges of SBR and tire were 740~2486, 740~1719, and the calorific value of SBR and tire was 39~40 kJ/g. The oil components were consisted of mostly 50 aromatic compounds. The particle size was decreased and the surface area was increased with increase of operating temperature, and the BET surface area was $47{\sim}63m^2/g$. The optimum condition of pyrolysis was the temperature of $700^{\circ}C$ with heating rate of $20^{\circ}C$, and the reactor was continuously purged with inert gas to sweep the evolved gases from the reaction zone.

  • PDF

Growth Inhibition of Sclerotium Cepivorum Causing Allium White Rot by Serratia plymuthica Producing Chitinase (Serratia plymuthica AL-1이 생산하는 chitinase에 의한 대파 흑색썩음균핵병균의 생육억제)

  • 김진호;최용화;강상재;김영훈;주길재
    • Journal of Life Science
    • /
    • v.13 no.1
    • /
    • pp.90-98
    • /
    • 2003
  • An allium rhizobacterium Serratia plymuthica AL-1 was previously selected as a biocontrol agent of allium white rot. The chitinase from S. plymuthica AL-1 produced in medium containing colloidal chitin was purified by ammonium sulfate precipitation (40~70%), affinity adsorption, column chromatography on DEAE-sephadex A-50 and sephadex C-200 gel filtration. The enzyme was purified 10.8-fold with a yield of 7.3% from the starting culture broth. The purified chtinase gave a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis, it's molecular weight was estimated to be 55 kDa. The optimum pH and temperature of the purified enzyme were pH 5.5 and $55^{\circ}C$, respectively and it is stable up to $50^{\circ}C$ and maintains around 90% of its activity for 60min. The enzyme were activated by $Ca^{2+}$, $Mn^{2+}$ and $Mg^{2+}$ and inhibited by $Cu^{2+}$, SDS, $\rho$-CMB, MIA, respectively. The purified chitinase showed broad spectrum of antifungal activities against plant pathogenic fungi Sclerotium cepivoruin, Alternana alternnta, Colletotrichum glceosporioidrs, Phoma sp., Sclerotinia sclerotiorum, Stemphylium solani, Fusarium oxysporium f. sp. niveum but rarely inhibited Phytophthora capsici and Pythium ultimum.. The purified chitinase from S. plymuthica AL-1 caused swelling, lysis, deceleration and degradation of the hyphal tips of S. sczerotiorum causing allium white rot. It suggest that S. prymuthica AL-1 chitinase play an important part in the bifunctional chitinase / lysozyme activity.

Characteristics of Enzymatic Hydrolysates of Rice Bran and Rice Protein by Mixing Ratio and Hydrolysis Times (미강과 쌀 단백질의 비율과 분해 시간에 따른 효소분해물의 품질 특성)

  • Seon, Yoo Kyung;Goo, Hoo Mo;Park, Kwang Kun;Yang, Eun Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.10
    • /
    • pp.1460-1466
    • /
    • 2016
  • This study was conducted to develop a savory ingredient using rice material. We made hydrolysates with ratios of rice bran and rice protein of 4:0, 3:1, 2:2, and 1:3 (w/w) using commercial enzymes, and then investigated their quality properties. At a ratio of 3:1, nitrogen degradation ratio (NDR), savory taste, and overall acceptability were the highest compared to other ratios. Rice bran and rice protein with a ratio of 3:1 were hydrolyzed for 13 days, and characteristics of the hydrolysate were investigated after 3, 5, 7, 10, and 13 days. Total nitrogen, amino nitrogen, and NDR of the hydrolysate after 10 days were higher than those of other hydrolysates. SDS-PAGE showed that the molecular weight of the hydrolysate peptide became smaller as hydrolysis time increased. Glutamic acid content was highest among all amino acids in the hydrolysate for 13 days. Amino acids related to bitter taste decreased from 5 to 13 days, whereas amino acids related to sweet taste substantially increased over time. Sensory evaluation showed that the hydrolysate after 10 days was best. These results suggest that rice bran and rice protein at a mixing ratio of 3:1 and hydrolysis for 10 days were optimal hydrolysis condition for development of natural savory ingredients.

Changes in the Properties of Protein during the Fermentation of Salted Shrimp (새우젓 숙성중의 단백질 특성변화에 관한 연구)

  • Kim, Byung-Mook
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.883-889
    • /
    • 1988
  • The salted small shrimps(Acetes japonicus) were fermented for 3 months at room temperature. During the period of fermentation, the changes of shrimp protein properties were determined. The extractability of soluble protein was slightly decreased in 1 month fermentation, but thereafter increased. The contents of 10% TCA soluble fraction were gradually increased during 3 month fermentation, and the rate of 10% TCA soluble fraction/total soluble protein was also greatly increased during the period of fermentation. Sephadex G-100 gel filtration pattern was changed after 1 month fermentation, showing the disappearance of low molecular weight protein peaks, the decomposition and the delay of elution time of main shrimp protein peaks. Polyacrylamide gel disc electrophoresis patterns showed the degradation of main protein bands into lots of smaller bands after 1 month fermentation. The contents of total free amino acids were slightly decreased in 1 month fermentation and then gradually increased during the Period of fermentation. The rate of free amino acids/soluble protein was steadily increased during the period of fermentation, but the rate of free amino acids/10% TCA soluble fraction was decreased continually during the period of fermentation. The contents of most free amino acids were increased during the period of fermentation, but those of histidine and arginine were greatly decreased in 1 month fermentation. Ammonia was increased after 1 month fermentation. The pH value of salted shrimp was slowly changed during 3 months of fermentation, showing increase from 7.8 to 8.2.

  • PDF

A Study on Extraction and Analysis of Red Dyed Fabric (적색 염직물의 색소 추출 방법 및 분석연구)

  • Imn, Se Yeon;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.32 no.3
    • /
    • pp.385-394
    • /
    • 2016
  • A fabric excavated from tombs or passed down is not easy to find its original color as it degrades and discolors by UV and visible rays, oxygen and microorganisms. LC-MS analysis is commonly used for separating and analyzing colors, but color extraction process is complicated and important in dye-qualitative analysis. To extract red colors from a fabric which is dyed with safflower and lac, solvents; hydrogen chloride, pyridine and oxalic acid are used and oxalic acid was the most effective solvent. Meanwhile, dyed samples were put in degradation condition; UV-A for 168 hours and analyzed with LC-MS to find out its colors'chemical changes. As a result, carthamin is detected in $T_R$ 13 min and laccaic acid A is detected in $T_R$ 10 min. However carthamin is not detected in a degraded fabric dying with safflower, it could be identified as a safflower fabric by the molecular weight of m/z 931. Through this study the most optimal method for red color extraction is found so it is expected to be used as a base line data for red color LC-MS analysis.

Isolation and Characterization of Soil Bacteria Degrading a Fungicide Defenoconazole (살균제 디페노코나졸 분해 세균 분리 및 특성 분석)

  • Ahn, Jae-Hyung;Ro, Yu-Mi;Lee, Gwan-Hyeong;Park, InCheol;Kim, Wan-Gyu;Han, Byeong-Hak;You, Jaehong
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.4
    • /
    • pp.349-354
    • /
    • 2016
  • Triazole fungicides occupy an important portion in the global fungicide market and are relatively persistent in soil compared to the other fungicides, suggesting possible adverse effects of the fungicides on human health and environment. In this study, we tried to isolate microorganisms from orchard soils, which can decompose the triazole fungicides, tebuconazole, fluquinconazole, and difenoconazole. Only difenoconazole was completely degraded in the enrichment culture, from which several difenoconazole-degrading bacteria were isolated. They showed the same rep-PCR pattern thus only one strain, C8-2, was further studied. The strain was identified as Sphingomonas sp. C8-2 based on its 16S rRNA gene sequence and decomposed 100 mg/L of difenoconazole in a minimum medium to an unknown metabolite with a molecular weight of 296 within 24 hours. The inhibition effect of the metabolite against representative soil microorganisms significantly decreased compared to that of difenoconazole thus the bacterial strain is expected to be used for the detoxification of difenoconazole in soil and crop.

Study on the physical properties of nylon66/glass fiber composites as a function of extrusion number (나일론66/유리섬유 복합체의 압출횟수에 따른 특성 연구)

  • Lee, Bom Yi;Kim, Youn Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3990-3996
    • /
    • 2014
  • Because the physical properties can be decreased when a Nylon 66/glass fiber composite is injected into a mold over $300^{\circ}C$, a systematic study of the thermal history in the case of re-use is needed. Nylon 66/glass fiber extrudates as a function of the extrusion number were prepared using a twin screw extruder at 305/290/273/268/265/$260^{\circ}C$. The chemical structure, thermal properties, melt index, crystal structure, Izod impact strength, and rheological properties were measured by Fourier transform infra-red (FT-IR), melt indexer, DSC, TGA, XRD, Izod impact tester, and dynamic rheometer. The FT-IR spectra indicated that the number of extrusions did not affect the chemical structure. The decrease in molecular weight with increasing extrusion number was confirmed by the melt index and the complex viscosity of extrudates. Based on the DSC and TGA results, the thermal history had no effect on the melting temperature, regardless of the number of extrusions, but the degradation temperature decreased up to $20^{\circ}C$ with increasing extrusion number. The Izod impact strengths of the extrudates were found to decrease with increasing extrusion number. No structural change after extrusion was also confirmed because there was no change in the slope and shape of the G'-G" plot.

Autohesion Behavior of Brominated-Isobutylene-Isoprene Gum Nanocomposites with Layered Clay (층상점토 충전 브롬화 이소부틸-이소프렌 검 나노복합체의 점착거동)

  • Mensah, Bismark;Kim, Sungjin;Lee, Dae Hak;Kim, Han Gil;Oh, Jong Gab;Nah, Changwoon
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.43-52
    • /
    • 2014
  • The effect of nanoclay (Cloisite 20A) on the self-adhesion behavior of uncured brominated-isobutylene-isoprene rubber (BIIR) has been studied. The dispersion state of nanoclay into the rubber matrix was examined by SEM, TEM and XRD analysis. The thermal degradation behavior of the filled and unfilled samples was examined by TGA and improvement in the thermal stability of the nanocomposites occurred based on the weight loss (%) measurements. Also, addition of nanoclay enhanced the cohesive strength of the material by reinforcement action thereby reducing the degree of molecular diffusion across the interface of butyl rubber. However, the average depth of penetration of the inter-diffused chains was still adequate to form entanglement on either side of the interface, and thus offered greater resistance to peeling, resulting in high tack strength measurements. The improvement in tack strength was only achieved at critical nanoclay loading above 8 phr. Contact angle measurement was also made to examine the surface characteristics. There was no significant interfacial property change by employing the nanoclay.

Purification and Characterization of Endo-polygalacturonase Produced by Plant Pathogenic fungus, Botrytis cinerea (식물 병원진균 Botrytis cinerea가 생산하는 Endo-polygalacturonase의 순수정제와 특성)

  • Kim, Byung-Young;Lee, Tae-Ho;Rha, Eu-Gene;Chung, Young-Ryun;Lee, Chang-Won;Kim, Jae-Won
    • The Korean Journal of Mycology
    • /
    • v.25 no.4 s.83
    • /
    • pp.330-339
    • /
    • 1997
  • Botrytis cinerea T91-1 has shown to produce at least four different polygalacturonases in a liquid medium containing citrus pectin as a carbon source. One of the enzymes, its molecular weight was estimated as 37 kDa by denatured polyacrylamide gel electrophoresis, was purified by a series of procedures including acetone precipitation, ion exchange, heparin affinity, and reverse phase column chromatographies. By viscometric analysis, the enzyme was revealed as an endo-polygalacturonase. The enzyme activity was inhibited by divalent cations such as $Ca^{2+}$, $Co^{2+}$, and $Cu^{2+}$. Km and Vmax for polygalacturonic acid hydrolysis were 0.33 mg/ml and 28.6 nM/min, respectively. The optimum temperature for enzymatic activity was $55^{\circ}C$ and the enzyme showed optimal pH values between 4.0 and 4.5. The enzyme was stable up to 12 hours in the range of pH 4 to 7 and at the temperature below $30^{\circ}C$. Amino acid sequence from N-terminal up to 6 amino acids determined by Edman degradation showed little homology with polygalacturonases from fungi and plants.

  • PDF

Degradation of Plant Lignin with The Supercritical Ethanol and Ru/C Catalyst Combination for Lignin-oil (초임계 에탄올과 루테늄 촉매에 의한 초본 리그닌의 오일화 반응)

  • Park, Jeesu;Kim, Jae-Young;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.355-363
    • /
    • 2015
  • Asian lignin was efficiently depolymerized with supercritical ethanol and Ru/C catalyst at various reaction temperature (250, 300, and $350^{\circ}C$). Lignin-oil was subjected to several physicochemical analyses such as GC/MS, GPC, and elemental analysis. With increasing reaction temperature, the yield of lignin-oil decreased from 89.5 wt% to 32.1 wt%. The average molecular weight (Mw) and polydispersity index (Mw/Mn) of lignin-oil obtained from $350^{\circ}C$ (547Da, 1.49) dramatically decreased compare to those of original asian lignin (3698Da, 2.68). This is a clear evidence of lignin depolymerization. GC/MS analysis revealed that the yield of monomeric phenols involving guaiacol, 4-ethyl-phenol, 4-methylguaiacol, syringol, and 4-methysyringol increased with increasing reaction temperature, and these were mostly produced with applying hydrogen gas and Ru/C catalyst (76.1 mg/g of lignin). Meanwhile, the carbon content of lignin-oil increased whereas the oxygen content decreased with increasing reaction temperature, suggesting that hydrodeoxygenation was significantly enhanced at higher temperature.